Blackbox or Revolution : Machine Learning Models Shaping the Future of Artificial Intelligence

Authors

  •   Sandeep Bhattacharjee Assistant Professor, Amity University, Kolkata, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata - 700 135, West Bengal

DOI:

https://doi.org/10.17010/ijcs/2025/v10/i1/174920

Keywords:

Artificial Intelligence

, dilemma, disruptor, ethics, future, potential.

Paper Submission Date

, January 8, 2025, Paper sent back for Revision, January 14, Paper Acceptance Date, January 16, Paper Published Online, February 5, 2025

Abstract

The disagreement on Artificial Intelligence (AI) relatedness has been a difficult phenomenon, in terms of its rapid emergence and participation into human cognition and decision making. The concept of Artificial Intelligence depicts dualism with respect to its consideration as a remarkable potential and as a disruptor of established standards. The current study investigates the delicate relationship between the argument of AI adoption and its transformational influence towards an improved future vision. The study explores the contrasting views of AI’s capabilities that includes predictive analytics and automation with trepidations that ranges from ethical dilemmas to the anxiety of displacement that creates cognitive and emotional dissonance. This contradiction possibly functions as a catalytic agent that can compel co-evolutionary growth by reinvention of established models by confronting limitations. The essence lies in combining AI's computational efficiency with human creativity, empathy, and intuition to create a more sustainable AI approach. The study demonstrates the application of topic modeling, a deep learning tool for analysis of market sentiments from two databases “AI tool of remarkable potential†and “disruptor of established standards†for identification of dominant topics, sentimental trend analysis, and similarity scores to test model fitness. Results indicate the presence of higher positive sentiments in the longer run that negates negative positive sentiments in the shorter run. This article redefines the role of AI as a fundamental component of constructing a sustainable, egalitarian, and inspired future for humanity and not just as a mere tool of automation.

Downloads

Download data is not yet available.

Published

2025-02-05

How to Cite

Bhattacharjee, S. (2025). Blackbox or Revolution : Machine Learning Models Shaping the Future of Artificial Intelligence. Indian Journal of Computer Science, 10(1), 8–16. https://doi.org/10.17010/ijcs/2025/v10/i1/174920

References

A. Benko and C. S. Lányi, “History of Artificial Intelligence,†in M. Khosrow-Pour (Ed.), Encyclopedia Inf. Sci. Tech., 2nd Ed., IGI Global, 2009, pp. 1759–1762, doi: 10.4018/978-1-60566-026-4.ch276.

D. M. Blei and J. D. Lafferty, “A correlated topic model of science,†Ann. Appl. Statist., vol. 1, no. 1, pp. 17–35, 2007. doi: 10.1214/07-AOAS114.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,†J. Mach. Learn. Res., vol. 3, 2003, pp. 993–1022, doi: 10.5555/944919.944937.

N. Bostrom, “Strategic implications of openness in AI development,†in R. V. Yampolskiy (Ed.), Art. Intel. Saf. Secur., Chapman and Hall/CRC, 2018, pp. 145–164, doi: 10.1201/9781351251389-8.

A. Brem, F. Giones, and M. Werle, “The AI digital revolution in innovation: A conceptual framework of artificial intelligence technologies for the management of innovation,†IEEE Trans. Eng. Manage., vol. 70, no. 2, pp. 770–776, Feb. 2023, doi: 10.1109/TEM.2021.3109983.

I. M. Cockburn, R. Henderson, and S. Stern, “The impact of Artificial Intelligence on innovation,†Working Paper 24449, Cambridge, MA, USA: Nat. Bur. Econ. Res., Mar. 2018, doi: 10.3386/w24449.

N. Crafts, “Artificial Intelligence as a general-purpose technology: A historical perspective,†Oxford Rev. Econ. Policy, vol. 37, no. 3, pp. 521–536, 2021, doi: 10.1093/oxrep/grab012.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent semantic analysis,†J. Amer. Soc. Inf. Sci., vol. 41, no. 6, pp. 391–407, 1990, doi: 10.1002/(SICI)1097-4571(199009).

European Commission. “Artificial Intelligence for Europe. Indexing by latent semantic analysis.†[Online]. Available: https://ec.europa.eu/digital-strategy/en/artificial-intelligence

R. Feldman and J. Sanger, The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, Cambridge University Press, 2007.

J. Füller, K. Hutter, J. Just, Wahl, V. Bilgram, and Z. Tekic, “How AI revolutionizes innovation management–Perceptions and implementation preferences of AI-based innovators,†Technological Forecasting Social Change, vol. 178, no. 6, 121598, May 2022, doi: 10.1016/j.techfore.2022.121598.

N. Haefner, J. Wincent, V. Parida, and O. Gassmann, “Artificial Intelligence and innovation management: A review, framework, and research agenda,†Technological Forecasting Social Change, vol. 162, 120392, Jan. 2021, doi: 10.1016/j.techfore.2020.120392.

M. Haenlein and A. Kaplan, “A brief history of Artificial Intelligence: On the past, present, and future of Artificial Intelligence,†California Manage. Rev., vol. 61, no. 4, pp. 5–14, doi: 10.1177/0008125619864925.

T. Hagendorff and K. Wezel, “15 challenges for AI: Or what AI (currently) can't do,†AI Soc., vol. 35, no. 2, pp. 355–365, 2020, doi: 10.1007/s00146-019-00886-y.

M. A. Hearst, “Untangling text data mining,†in Proc. 37th Annu. Meeting Assoc. Comput. Linguistics, pp. 3–10, 1999, doi: 10.3115/1034678.1034679.

J. Hopster, “What are socially disruptive technologies?†Technol. Soc., 67, 101750, 2021, doi: 10.1016/j.techsoc.2021.101750.

A. Hotho, A. Nürnberger, and G. Paaß, “A brief survey of text mining,†J. Lang. Technol. Comput. Linguistics, vol. 20, no. 1, pp. 19–62, 2005, doi: doi.org/10.21248/jlcl.20.2005.68.

Y. Zhang, M. Chen, and L. Liu, “A review on text mining,†in 2015 6th IEEE Int. Conf. Softw. Eng. Service Sci., pp. 681–685, Sep. 2015, doi: 10.1109/ICSESS.2015.7339327.

T. Jacobs and R. Tschötschel, “Topic models meet discourse analysis: A quantitative tool for a qualitative approach,†Int. J. Social Res. Methodology, vol. 22, no. 5, pp. 469–485, 2019, doi: 10.1080/13645579.2019.1576317.

C. Kakatkar, V. Bilgram, and J. Füller, “Innovation analytics: Leveraging artificial intelligence in the innovation process,†Bus. Horizons, vol. 63, no. 2, pp. 171–181, 2020, doi: 10.1016/j.bushor.2019.11.007.

P. Klein, “Using social media and artificial intelligence to find your purpose,†Creative Nursing, vol. 30, no. 2, pp. 103–110, 2024, doi: 10.1891/CN-2023-0001.

J. McCarthy, “What is artificial intelligence?†[Online]. Available: http://www-formal.stanford.edu/jmc/whatisai/

S. Muggleton, “Alan Turing and the development of artificial intelligence,†AI Commun., vol. 27, no. 1, Art. no. 5, pp. 3–10, 2014, doi: 10.3233/AIC-130580.

N. Muthukrishnan, F. Maleki, K. Ovens, C. Reinhold, B. Forghani, and R. Forghani, “Brief history of Artificial Intelligence,†Neuroimaging Clinics North America, vol. 30, no. 4, pp. 393–399, 2020, doi: 10.1016/j.nic.2020.07.001.

A. O'Mara-Eves, J. Thomas, J. McNaught, M. Miwa, and S. Ananiadou, “Using text mining for study identification in systematic reviews: A systematic review of current approaches,†Systematic Reviews, 4, pp. 1–22, 2015, doi: 10.1186/2046-4053-4-5.

V. D. Păvăloaia and S. C. Necula, “Artificial intelligence as a disruptive technology - A systematic literature review,†Electronics, vol. 12, no. 5, 1102, 2023. doi: 10.3390/electronics12051102.

S. Russell and P. Norvig, Artificial Intell.: A Modern Approach, 4th ed., Pearson Education, 2021.

B. Saha, “Application of topic modelling for literature review in management research,†in A. K. Sinha, S. K. Ghosh, and S. K. Ghosh (Eds.), Interdisciplinary Res. Technol. Manage., pp. 307–314, 2021. CRC Press, doi: 10.1201/9781003202240-40.

M. Sharma, C. Savage, M. Nair, I. Larsson, P. Svedberg, and J. M. Nygren, “Artificial intelligence applications in health care practice: Scoping review,†J. Med. Internet Res., vol. 24, no. 10, e40238, 2022, doi: 10.2196/40238.

T. Q. Sun and R. Medaglia, “Mapping the challenges of artificial intelligence in the public sector: Evidence from public healthcare,†Government Inf. Quart., vol. 36, no. 2, pp. 368–383, 2019, doi: 10.1016/j.giq.2018.09.008.

J. Thomas, J. McNaught, and S. Ananiadou, “Applications of text mining within systematic reviews,†Res. Synthesis Methods, vol. 2, no. 1, pp. 1–14, 2011, doi: 10.1002/jrsm.27.

I. Triguero, D. Molina, J. Poyatos, J. Del Ser, and F. Herrera, “General Purpose Artificial Intelligence Systems (GPAIS): Properties, definition, taxonomy, societal implications and responsible governance,†Inf. Fusion, 103, 102135, 2024, doi: 10.1016/j.inffus.2023.102135.

S. Verma, R. Sharma, S. Deb, and D. Maitra, “Artificial intelligence in marketing: Systematic review and future research direction,†Int. J. Inf. Manage. Data Insights, vol. 1, no. 1, 100002, 2021, doi: 10.1016/j.jjimei.2020.100002.

W. Wu, T. Huang, and K. Gong, “Ethical principles and governance technology development of AI in China,†Eng., vol. 6, no. 3, pp. 302–309, Jan. 2020, doi: 10.1016/j.eng.2019.08.011.

F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explainable AI: A brief survey on history, research areas, approaches and challenges,†in J. Tang, M. Zhang, D. Li, and Y. Liu (Eds.), Natural Lang. Process. Chinese Comput.: 8th CCF Int. Conf., NLPCC 2019, Dunhuang, China, Oct. 9–14, 2019, Proc., Part II (pp. 563–574), Springer Int. Publishing, doi: 10.1007/978-3-030-32236-6_47.