Precision Mushroom Farm Monitoring System With Classification of Toxic Mushrooms in Punjab : A Comprehensive Review
DOI:
https://doi.org/10.17010/ijcs/2024/v9/i2/173861Keywords:
Internet of Things (IoT)
, Machine Learning (ML), Precision Farming.Paper Submission Date
, February 23, 2024, Paper sent back for Revision, March 2, Paper Acceptance Date, March 10, Paper Published Online, April 5, 2024.Abstract
The present paper presents research findings and research gaps relating to the use of research and development in mushroom cultivation based agriculture. This in-depth analysis delves into the significant effects of incorporating cutting-edge technologies into mushroom cultivation. It focuses on creating a precise monitoring and control system customized for growing mushrooms, as well as using advanced methods to detect harmful mushroom varieties. Furthermore, the analysis looks into potential impacts on agricultural efficiency, food safety, and preventive healthcare, underscoring broader societal effects. This synthesis strives to provide a comprehensive insight into how precision farming, IoT, and Machine learning collaborate to build a strong ecosystem for secure and efficient mushroom farming. It concludes by advocating for a well-rounded approach that tackles security, scalability, and ethical considerations when implementing such systems, fostering sustainable, and safe progress in precision mushroom cultivation.Downloads
Published
How to Cite
Issue
Section
References
E. Dorr, M. Koegler, B. Gabrielle, and C. Aubry, “Life cycle assessment of a circular, urban mushroom farm,†J. Cleaner Prod., vol. 288, pp. 125–168, Art. no. 125668,2021, doi: 10.1016/j.jclepro.2020.125668.
R. Y. Adhitya, M. A. Ramadhan, S. Kautsar, N. Rinanto, S. T. Sarena, Ii Munadhif, M Syai'in, R. T. Soelistijono, and A. Soeprijanto, "Comparison methods of Fuzzy Logic Control and Feed Forward Neural Network in automatic operating temperature and humidity control system (Oyster Mushroom Farm House) using microcontroller," in 2016 Int. Symp. Electronics Smart Devices, pp. 168–173, doi: 10.1109/ISESD.2016.7886713.
Y. C. Li, S. Y. Wu, C. Y. Chu, and H. C. Huang, “Hydrogen production from mushroom farm waste with a two-step acid hydrolysis process,†Int. J. Hydrogen Energy, vol. 36, no. 21, pp.14245–14251, 2011, doi: 10.1016/j.ijhydene.2011.06.102.
C. S. Kim, T. Shirouzu, A. Nakagiri, K. Sotome, E. Nagasawa, and N. Maekawa, “Trichodermamienum sp. nov., isolated from mushroom farms in Japan,†Antonie van Leeuwenhoek, vol. 102, no. 4, pp. 629–641, Nov. 2012, doi: 10.1007/s10482-012-9758-3.
W. A. A. Q. I. Wan-Mohtar, S. A. Halim-Lim, N. Z. Kamarudin, Y. Rukayadi, M. H. A. Rahim, A. A. Jamaludin, and Z. Ilham, “Fruiting-body-base flour from an Oyster mushroom waste in the development of antioxidative chicken patty,†J. Food Sci., vol. 85, no. 10, pp.3124–3133, Aug. 2020, doi: 10.1111/1750-3841.15402.
S. H. Lim, Y. H. Lee, and H. W. Kang,“Efficient recovery of Lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization,†Mycobiology, vol. 41, no. 4, pp.214–220, Dec. 2013, doi: 10.5941/MYCO.2013.41.4.214.
I. M. Chung, J.-G. Han, W.-S. Kong, J.-K. Kim, M.-J. An, J. H. Lee, Y.-J. An, M. Y. Jung, and S.-H. Kim, “Regional discrimination of Agaricusbisporus mushroom using the natural stable isotope ratios,†Food Chemistry, vol. 264, pp. 92–100, Oct. 2018, doi: 10.1016/j.foodchem.2018.04.138.
F. Branco, F. Moreira, J. Martins, M. Au-Yong-Oliveira, and R. Gonçalves, "Conceptual approach for an extension to a mushroom farm distributed process control system: IoT and blockchain," in Ã.Rocha, H. Adeli, L. Reis, S. Costanzo, (eds) New Knowledge in Inf. Syst. Technologies. WorldCIST'19 2019. Advances in Intell. Syst. Comput., vol. 930, Springer, Cham.
R. V. Kranenburg, and A. Bassi, “IoT challenges,†Commun. Mobile Comput., vol. 1, Art. no. 9, 2012, doi:10.1186/2192-1121-1-9.
Z.- K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C. K. Chen, and S. Shieh, “IoT security: Ongoing challenges and research opportunities,†in 2014 IEEE 7th Int. Conf. Service Oriented Comput. Appl., pp. 230–234, Nov. 2014, doi: 10.1109/SOCA.2014.58.
M. B. M. Noor, and W. H. Hassan, “Current research on Internet of Things (IoT) security: A survey,†Comput. Netw., vol. 148, pp. 283–294, Jan. 2019, doi: 10.1016/j.comnet.2018.11.025.
L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques based on machine learning: How do IoT devices use AI to enhance security?," Signal Process. Mag., vol. 35, no. 5, pp. 41–49, Sep. 2018, doi: 10.1109/MSP.2018.2825478.
A. Koohang, C. S. Sargent, J. H. Nord, and J. Paliszkiewicz, “Internet of Things (IoT): From awareness to continued use,†Int. J. Inform. Manage., vol. 62, no. C, 2022, doi: 10.1016/j.ijinfomgt.2021.102442.
I. Lee and K. Lee, “The Internet of Things (IoT): Applications, investments, and challenges for enterprises,†Bus. Horizons, vol. 58, no. 4, pp. 431–440, 2015, doi: 10.1016/j.bushor.2015.03.008.
C. A. Hernández-Morales, J. M. Luna-Rivera, and R. Perez-Jimenez, “Design and deployment of a practical IoT-based monitoring system for protected cultivations,†Comput. Commun., vol. 186, pp. 51–64, Mar. 2022, doi: 10.1016/j.comcom.2022.01.009.
A. Vij, S. Vijendra, A. Jain, S. Bajaj, A. Bassi, and A. Sharma, “IoT and machinelearning approaches for automation of farm irrigation system,†Procedia Comp. Sci., vol. 167,pp. 1250–1257, 2020, doi: 10.1016/j.procs.2020.03.440.
M. M. Islam, S. S. Tonmoy, S. Quayum, A. R. Sarker, S. U. Hani, and M. A. Mannan, “Smart poultry farm incorporating GSM and IoT,†in 2019 Int. Conf. Robot., Elect. Signal Process. Technol., pp. 277–280, 2019, doi: 10.1109/ICREST.2019.8644300.
N. D. Shingarwade, and S. C. Suryavanshi, “Performance evaluation of cloud based farm automation,†Int. Conf. Comput., Communication, Control Automat., pp. 1–6, Aug. 2017, doi: 10.1109/ICCUBEA.2017.8463774.
E. M. E. Ahmed, K. H. B. Abdalla, and I. Eltahir, “Farm automation based on IoT,†in Int. Conf. Comput., Control, Elect., Electronics Eng., Khartoum, Sudan, 2018, pp. 1–4, doi: 10.1109/ICCCEEE.2018.8515853.
S. Mitkari, A. Pingle, Y. Sonawane, S. M. Walunj, and A. Shirsath, “IoT based smart poultry farm,†Eng., Agricultural Food Sciences, Comput. Sci., Environmental Sci., 2019. [Online]. Available: https://www.semanticscholar.org/paper/IOT-Based-Smart-Poultry-Farm-Mitkari-Pingle/8d1505252084b80b273b11bfc2cbd0ac0ee3375a
N. Zahan, M. Z. Hasan, M. A. Malek, and S. S. Reya, “A deep learning-based approach for edible, inedible and poisonous mushroom classification,†in 2021 Int. Conf. Inf. Communication Technol. Sustain. Develop.,Dhaka, Bangladesh, pp. 440–444, Feb. 2021, doi: 10.1109/ICICT4SD50815.2021.9396845.
M. Sevindik, "Poisonous mushroom (nonedible) as an antioxidant source," Plant Antioxidants Health, pp. 1–25, Sep. 2020.
S. Ismail, A. R. Zainal, and A. Mustapha, "Behavioural features for mushroom classification," in 2018 IEEE Symp. Comput. Appl. Ind. Electronics, Penang, Malaysia, 2018, pp. 412–415, doi: 10.1109/ISCAIE.2018.8405508.
J. White, S. A. Weinstein, L. D. Haro, R. Bédry, A. Schaper, B. H. Rumack, and T. Zilker, “Mushroom poisoning: A proposed new clinical classification,†Toxicon, vol. 157, pp. 53–65, Jan. 2019, doi: 10.1016/j.toxicon.2018.11.007.
A. Wibowo, Y. Rahayu, A. Riyanto, and T. Hidayatulloh, “Classification algorithm for edible mushroom identification,†in 2018 Int. Conf. Inform. Commun. Technol., Yogyakarta, Indonesia, pp. 250–253, Mar. 2018, doi: 10.1109/ICOIACT.2018.8350746.
J. J. Lee, M. C. Aime, B. Rajwa, and E. Bae, “Machine Learning based classification of mushrooms using a smartphone application,†Appl. Sciences, vol. 12, no. 22, Art.no. 11685, 2022, doi: 10.3390/app122211685.
P. Maurya, and N. P. Singh, “Mushroom classification using feature-based machine learning approach,†in B. Chaudhuri, M. Nakagawa, P. Khanna, S. Kumar, (eds) Proc. 3rd Int. Conf. Comput. Vision Image Process. Advances Intell. Syst. Comput., vol. 1022. Springer, Singapore, vol. 1, pp. 197–206, 2020, doi: 10.1007/978-981-32-9088-4_17.
N. Chitayae, and A. Sunyoto, “Performance comparison of mushroom types classification using K-nearest neighbor method and decision tree method,†in 2020 3rd Int. Conf. Inf. Commun. Technol., Yogyakarta, Indonesia, 2020, pp. 308–313, doi: 10.1109/ICOIACT50329.2020.9332148.
D. Wagner, D. Heider, and G. Hattab, “Mushroom data creation, curation, and simulation to support classification tasks,†Scientific Reports, vol. 11, Art. no. 8134, pp. 1–12, 2021, doi:10.1038/s41598-021-87602-3.
B. Zhang, Y. Zhao, and Z. Li, "Using deep convolutional neural networks to classify poisonous and edible mushrooms found in China," 2022, doi:10.48550/arXiv.2210.10351.
K. Kousalya, B. Krishnakumar, S. Boomika, N. Dharati, and Hemavathy, “Edible mushroom identification using machine learning,†in 2022 Int. Conf. Comput. Communication Inform., Coimbatore, India, 2022, pp. 1–7, doi: 10.1109/ICCCI54379.2022.9741040.
S. Zafar, F. Jabeen, M. Akram, Z. Riaz, and N. Munir, “Mushroom species and classification: Bioactives in poisonous and edible mushrooms,†in Poisonous Plants Phytochemicals Drug Discovery, John Wiley & Sons, 2021, pp. 163–188, doi: 10.1002/9781119650034.
N. J. Ria, and S. M. S. I. Badhon, "State of art research in edible and poisonous mushroom recognition," in 2021 12th Int. Conf. Comput. Communication Netw. Technologies, 2021, Kharagpur, India, 2021, pp. 01–05, doi: 10.1109/ICCCNT51525.2021.9579987.
H. Karami, N. Shariatifar, S. Nazmara, M. Moazzen, B. Mahmoodi, and A. M. Khaneghah, “The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran,†Biol. Trace Element Res., vol. 199, pp. 389–400, 2021, doi: 10.1007/s12011-020-02130-x.
J. Falandysz, M. Chudzińska, D. Barałkiewicz, M. Drewnowska, and A. Hanć, “Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China,†Environmental Sci. Pollut. Res., vol. 24, pp.11472–11482, 2017, doi: 10.1007/s11356-017-8554-z.
S. Mahesh, D. S. Jayas, J. Paliwal, and N. D. G. White, “Hyperspectral imaging to classify and monitor quality of agricultural materials,†J. Stored Products Res., vol. 61, pp.1726, Mar. 2015, doi: 10.1016/j.jspr.2015.01.006.
K. Tutuncu, I. Cinar, R. Kursun, and M. Koklu, “Edible and poisonous mushrooms classification by Machine Learning algorithms,†in 2022 11th Mediterranean Conf. Embedded Comput. (MECO), Budva, Montenegro, 2022, pp. 1–4, doi: 10.1109/MECO55406.2022.9797212.
E. S. Alkronz, K. A. Moghayer, M. Meimeh, M. Gazzaz, B. S.Abu-Nasser, and S. S. Abu-Naser, “Prediction of whether mushroom is edible or poisonous using back-propagation neural network,†Int. J. Academic Appl. Res., vol. 3, no. 2, pp. 1–8, 2019.[Online]. Available: http://ijeais.org/wp-content/uploads/2019/02/IJAAR190201.pdf
H. El-Ramady, N. Abdalla, K. Badgar, X. Llanaj, G. Törős, P. Hajdú, Y. Eid, and J. Prokisch, “Edible mushrooms for sustainable and healthy human food: Nutritional and medicinal attributes,†Sustainability, vol. 14, no. 9, p. 4941, 2022, doi: 10.3390/su14094941.
A. Patra, and A. K. Mukherjee, "Mushroom mycetism–A neglected and challenging medical emergency in the Indian subcontinent: A road map for its prevention and treatment," Toxicon, pp. 56–77, Oct. 2022, doi: 10.1016/j.toxicon.2022.07.014.
D. Jain, “IoT applications in agriculture,†Indian J. Comput. Sci., vol. 5, no. 1, pp.19–21, 2020, doi: 10.17010/ijcs/2020/v5/i1/151314
S. Patil, A. Korgaonkar, S. Nadankar, and A. Ekbote, “Potato leaf disease and its classification using deeplearning†Indian J. Comput. Sci., vol. 8, no. 4, pp. 8–17, 2023, Doi: 10.17010/ijcs/2023/v8/i4/173264.
P. Rajakumar, B. S. Siddhaarth, B. Sriram, and S. Rajasekhar, "Automation and monitoring system for mushroom cultivation using mobile application and Esp-32," Int. Conf. Power, Energy, Control Transmiss. Syst., Dec. 2022, doi: 10.1109/ICPECTS56089.2022.10046843.
B. Wei, and Y. Zhang, et al., "Recursive-YOLOv5 network for edible mushroom detection in scenes with vertical stick placement," in IEEE Access, vol. 10, pp. 40093–40108, 2022, doi: 10.1109/ACCESS.2022.3165160.
D. Ye, Q. Hu, X. Bai, W. Zhang, and H. Guo, "Increasing the value of Phragmites australis straw in a sustainable integrated agriculture model (SIAM) comprising edible mushroom cultivation and spent mushroom substrate compost," Sci. Total Environ., vol. 869, p. 161807, Apr. 2023, doi: 10.1016/j.scitotenv.2023.161807.