Advanced Driver Assistant System

Authors

  •   Sanjay S. Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu
  •   Vasantha Kumar S. Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu
  •   Mohamed Rifayee Hussain Z. Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu
  •   Saravana Kumar K. Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu
  •   Dineshkumar S. Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu
  •   Rathika P. D. Assistant Professor, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

DOI:

https://doi.org/10.17010/ijcs/2021/v6/i3-4/165410

Keywords:

ADAS

, EDAS, Lane Detection, LDWS, OpenCV, Sliding Window, TensorFlow.

Manuscript Received

, May 24, 2021, Revised, June 24, Accepted, July 7, 2021. Date of Publication, August 5, 2021.

Abstract

Road accidents are the most terrifying thing that can happen to a driver. Worst of all, we refuse to learn from our mistakes along the way. The majority of road users are aware of the general rules and safety measures to take while on the road but injuries and crashes are caused by the negligence of road users. The most common cause of accidents and collision is human error. The aim of this project is to automate and improve the safety of vehicles. Lane Departure Warning System (LDWS) and Emergency Driver Assist System (EDAS) are described in this paper. The LDWS uses camera to track lane markers to see if the driver is drifting accidentally. In this project, whenever the vehicle is moving out of the lane, the device gives the driver a warning in the form of audio or visual signal. Whenever the driver's attention deviates from driving activity for a particular interval of time, EDAS alerts the driver.

Downloads

Download data is not yet available.

Author Biographies

Sanjay S., Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

ORCID iD : https://orcid.org/0000-0001-6784-5057

Vasantha Kumar S., Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

ORCID iD : https://orcid.org/0000-0003-1735-9936

Mohamed Rifayee Hussain Z., Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

ORCID iD : https://orcid.org/0000-0002-6649-1442

Saravana Kumar K., Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

ORCID iD : https://orcid.org/0000-0003-1735-9936

Dineshkumar S., Student, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

ORCID iD : https://orcid.org/0000-0002-9742-8569

Rathika P. D., Assistant Professor, Department of Robotics and Automation, PSG College of Technology, Avinashi Road, Peelamedu, Coimbatore – 641 004, Tamil Nadu

ORCID iD : https://orcid.org/0000-0001-5543-9035

Downloads

Published

2021-08-31

How to Cite

S., S., S., V. K., Z., M. R. H., K., S. K., S., D., & P. D., R. (2021). Advanced Driver Assistant System. Indian Journal of Computer Science, 6(3-4), 35–44. https://doi.org/10.17010/ijcs/2021/v6/i3-4/165410

References

P. R. Nagrale and V. P. Kshirsagar, “Lane detection with lane departure warning system,†Int. J. of Scientific Develop. and Res., vol. 4, no. 8, pp. 14–17, 2019. [Online]. Available: https://www.ijsdr.org/papers/IJSDR1908003.pdf

F. Habeeb, K. N. Kunan and N. Tuturaja, “A study on lane departure warning system and object detection on roads for forward collision avoidance,†Int. J. of Innovative Res. in Elect., Electron., Instrumentation and Control Eng., vol. 6, no. 5, pp. 51–54, 2018. [Online]. Available:https://ijireeice.com/wp-content/uploads/2018/05/IJIREEICE-11.pdf

M. J. Flores, J. M. Armingol, and A. Escalera, “Real-time drowsiness detection system for an intelligent vehicle,†2008 IEEE Intelligent Vehicles Symp., vol. 2008, pp. 637–642, June 2008. [Online]. Available: https://doi.org/10.1109/IVS.2008.4621125

N. Alioua, A. Amine, and M. Rziza “Driver’s fatigue detection based on yawning extraction,†Int. J. of Veh. Technol., vol. 2014, pp. 1–7. [Online]. Available: https://doi.org/10.1155/2014/678786

B. Akrout and W. Mahdi, “Visual based approach for drowsiness detection,†vol. 2013, pp. 1324–1329, IEEE Intelligent Vehicles Symp,. June 2013. [Online]. Available: https://doi.org/10.1109/IVS.2013.6629650