Apriori Algorithm Based Component Classifications and
Adaptation for Software Reuse

Sampath Korra'

based on the recommendation of rule-based analysis.

Keywords : Adaptive, component, domain, reuse, technologies

Abstract

With the growth in software development, the software user expects high-quality software services with lesser time complexity.
Therefore, the demand for software component based development is also increasing. In the recent past, a good number of research
attempts have tried to build an automated framework for generating the recommendations for component equivalence. In software
engineering and program building, reusability is the utilization of existing resources in some structure inside the product items.
Adaptive software reuse products improve the life cycle of software and enhance the planning, coding, and documentation in
different approaches of reusability. On the other hand, reusability can be used to meet with new software demands. Thus, the
proposed novel approach to Apriori based component classifications and adaptation is used to software component reusability

. INTRODUCTION

The key benefit of Componen Based Software
Engineering(CBSE) is supporting the design methods
that are used for adaptive reuse. Reuse construction of the
new system need not start from scratch, but it can be done
with the modification of the integration and the
description of the existing ones. CBSE was used to
support the evolution of the components of different
technologies[1]. However, nowadays it is sufficient to
keep the store. Modification of the components is widely
accepted as one of the main problems of the CBSE. The
ability of application developers to easily adjust closed
software components to function properly within their
programs is necessary for the market creation of real
components and the implementation of components [2].
A platform that focuses on components (such as CORBA,
COM, JavaBeans, and .Net) that address common

collaboration using linguistic Interface Definition
Language (IDL) to identify the proposed functions (and
requests) from different programs is needed.

The components of the IDL interface are important for
software integration as they highlight the signature
between components in the view of their specifications.
However, all solutions to signature problems do not
guarantee that the component will work properly.
Obviously, it can happen exactly at the protocol level due
to the order of the exchange messages, and it also blocks
the conditions [3], i.e. due to the corresponding behavior
of the associated components. In addition to tests based
on the case of component compatibility, more stringent
techniques are required to maximize integration of craft
activities into engineering. For example, the system
developer must verify that the integration of third-party
components may suggest new techniques in the
application being developed. To determine the properties

Manuscript Received :
Publication : April 5,2022.

February 18, 2022 ; Revised :

March 6, 2022 ; Accepted :

March 14, 2022. Date of

S.Korra', Associate Professor, Department of CSE, Sri Indu College of Engineering and Technology (Autonomous), Sheriguda,
Ibrahimpatnam, Hyderabad - 501 510, Telangana. Email : sampath_korra@yahoo.co.in;

ORCID D : https://orcid.org/0000-0002-3345-5293
DOI : https//doi.org/10.17010/ijcs/2022/v7/i2/169683

32 Indian Journal of Computer Science « March - April 2022

of the system that contain a large number of interactive
elements, the reusable description of the interaction
characteristics of the component is required [4].

Software reuse enables us to improve the reuse
components of software and reduces its cost. Reuse
allows us to make the characteristics of the software
artifacts available, from not to build a computer system
from scratch. Reuse of program means reusing the inputs
techniques and outputs after the software development
effort. Software industry uses different components for
operations, it requires a number of reusable components
to build software quickly and cost-effectively. If not,
ineffective reuse of resources become unacceptable. It
takes time to develop software and building repository of
reusable components for use [5]. Development of
repository provides the components to select when
required with the assurance that at one time the
relationship will protect to adapt and ensure that the
corresponding application is built using the components
and those should not be changed because of changes in
components. A new and added functionality is that we
have the ingredients to make it easier to complete the
application and use of these components, and there are no
changes in downtime [6].

Il. LITERATURE REVIEW

The principles of software development focus on the
creation and evolution of software. The CBSE advantage
is the reuse of software. It is going to adopt new
techniques in a way that component classification
becomes easier. The CBSE focuses on new development
process of the components in a release. In the same
manner, allowing for time for completion of work, the
development of software proceeds quickly [7]. The part
needs to change or adapt to a new system, only code
changes are needed. Adaptability of the system means
that the system can easily adapt to a diverse environment.
The object-oriented software can easily adapt to new
requirements because of the high level of abstraction. It
models problems with a set of types or classes from which
objects are created. It focuses on the creation and rapid
evolution of the system. There is no particular step to
organize in this process. There is a similar pattern of
development of software and development speed.
Adaptability grew up in rapid application development.
In Adaptive Software Development, the overall team
focuses on the problem of establishing the self-absorbed,
sharing ideas, individuals, and teams online [8].

Reuse is typically categorized according to the nature of
the environment in which the software components are
restored. Vertical reuse occurs when software
components are reused for different projects in the same
domain as the application. An example of vertical reuse
may be a boundary detection process used in various
image processing programs. It should be remembered
that the recovery of software components is done at
different stages of the life cycle of different generations
of the same project. Sometimes, the term vertical reuse is
employed in a more limited way. Successful vertical
reuse requires detailed information about the application
domain [9].

The software recovery process facilitates increased
productivity, reliability, quality, performance, cost
reduction, effort, risk, and implementation time. Primary
study is necessary to start the software recovery process,
but this study is disbursement over some recovery. It
creates a repository and recovery process of the
knowledge base, which improves the quality after each
recovery, reduces the required development work for
future software development, and ultimately reduces the
risks of new projects based on knowledge repository [10].

The term reuse of software means that there are
reusable software component files that can be used as part
of new system development. The most popular software
for reusing software components can be advanced, such
as requirements or lower-level designs, such as source
code modules or related components such as test plans or
documentation. Regional and application environments
are relatively stable, so reuse is considered appropriate to
develop projects [11][12].

Software re-engineering is a successful system as a
stand-alone system but must communicate with other
applications due to changes in requirements. This can
happen if the control system now uses a commercially
available database package to store data instead of using
it as a patented package. The new interface requirements
clearly indicates that the existing system needs to be
modified. Re-engineering is associated with reuse of
software as systems must understand in part or in full
before they can be converted or reused. However,
re-engineering usually requires more changes than the
ones that wish to reuse the software [13][15].

Reuse is a great opportunity to improve software
quality while reducing costs. It is based on the concept of
reusable components and is used in the same way that
electrical engineers choose system components.

Indian Journal of Computer Science * March - April 2022 33

Software reuse can occur at many levels of the software
lifecycle [14]. Most reuse researchers believe that
domain analysis is a prerequisite for successful program
reuse. Domain analysis is a common system analysis
whose primary purpose is to identify the operations and
elements needed to determine the information used to
process a particular application in a domain. In addition,
domain analysis can accurately identify domains and
software components in areas that are beneficial for user
reuse. Ideally, anybody wants to be able to create domain-
specific languages that allow writing descriptions based
on important domains [16].

There are many options for high-quality experimental
work that is reused in the library. The problem is that it is
difficult to use parallel methods for parallel attempts to
make comparisons. System reuse is a typical work and it
is difficult to get more actions that are not directly related
to a particular project. However, there are some research
opportunities that can bring profits [17].

The lack of basic planning steps allows the
development of software quickly for lifecycle of the
software. The cycle of software in this process is very
short for a new version. It can come with additional
equipment quickly. The method or quick prototyping is
the cornerstone of the development of both the software
and the development of the application where the
difference between the two methods is the endpoint. In
the development of the software only the endpoint that
did not require software code is ported to a request
generation. On the other hand, rapid development
application allows for the end of a job, free from the
problems that have software which meets the
requirements of the end-user [18][19].

Software is developed with three steps, each evolving
around the coding of a program. The first step is
speculation when code developers try to understand the
nature of software and the needs of those who use it. This
is dependent on improvements and user reports to guide
the work. If there is no available report, the project uses
the basic requirements set by the end-user [20]. It ensures
that individual projects team members are developing
and communicating via intra network for the software
developments. They keep entire data at one system, then
they combine the modules, it is tested and uploaded or
handed over to the client. The project does not need any
additional information or outside contributions and to
determine the part of the software [21] during the training
phase, the release of a new version of the software to use.

34 Indian Journal of Computer Science « March - April 2022

These assets are improved and the reports are used in the
first part of the project and the cycle repeats itself [22].

An additional analysis of the software component
before adding it to the recovery library can lead to
significant savings in the lifecycle, especially if the
component is reused many times. Thus, the reusable
component is obtained in combination with domain
analysis [23]. Reuse library assessment requires further
study before the system is included. This results in a
classification of the reusable component before it is
placed into the recovery library [25].

The classification of reusable software components is
a logical step in the reuse process. It means a description
of the component. This description is generally more
complete than the description typically used for
documented components that have been developed for
reuse resulting in efficiency of the documents used in the
feature [26].

Consider the source code of the module which is used
for adding to the recovery library. Software Engineering
practices require a description of the module interface
and the maintenance cost of the software [27]. Many
organizations use programming practices and require
each source code to be tested against organizational
standards. This means that every decision in the Tree
module must show some results during the test. If there
are no errors, the module is assumed to be correct.
Suppose the same module is reused, and the application is
usually different from the application being created. If the
new application system is required in real-time, due to the
new real-time restrictions, it is not immediately clear that
the module can be used in the new system [28].

In addition to the source code, potentially adaptive
reusable software components must be authenticated
before being added to the reuse library. For example, all
documents must be read by an independent team before
reusing the libraries in the new system. The goal is to
provide an independent review of the documents and
avoid key inaccuracies for reuse projects. Cognitive
software reuse is used to provide challenges that are
needed for the success of significant management of
components. The framework is used for component
normalization for the platform-independent by using
adaptive software reuse [24].

The classification of reusable software components
should be based on atleast two factors: perceptual
component corrections and some metrics describing the
likelihood of component reuse. Indicators should show

the number of other software systems. It is planned to use
a section, difficulties include a part of other software
systems and quality assessment of certain types of
equipment [29]. Source code classification is the most
common complementary evaluation of software
components before they are placed again in libraries. Let
us say that the source code is satisfactorily tested by the
development of the organization and is at present
considered a candidate for recovery [30].

The metrics should be about testability, easy pairing
with another module, and the probability that the source
code of the module is complete if it is placed in the reuse
library. Portability is considered to be an ideal feature of
most software. In the era of ubiquitous computing
technology and rapid development, few software
products are unable to implement many environments
throughout their lifecycle. Storage products must use
their own cost to implement as many platforms as
possible[31].

Any type or scale of software can take advantage of
the ability to migrate when new systems and better
systems are available. Older software systems developed
as part of agile software development are often poorly
designed and documented but still work well in
organizations of critical applications. Poor design and
documentation make it difficult to reclaim the
functionality of legacy systems in future projects.

1. MATHEMATICAL MODEL OF THE
PROPOSED FRAMEWORK

The first step of this proposed work is the pre-processing
framework for determining and extracting the influential
parameters. The most appropriate algorithm for feature or
attribute selection is a Genetic algorithm, where initially
all the attributes are considered as individual subsets and
the final combination of the attributes or features are
noted as optimal best feature subset. The framework
proposed is as follows:

A. Equations

Step 1: Calculate and collect the list of attributes to be
ordered in terms of significance:

M[]«<VP3 (glp,») (1)

Where,
M :1nitial set of attributes,
P:The total available list of attributes.

Step 2 : Assign the selection vector as S[L], where L is the
size of the initial attribute list. Initially, the vector is filled
with zeros to denote that no optimal subset is selected.

VS, S[i]«0 2)
Step 3: In this step of the algorithm, the fitness for all the

attributes is calculated so that the ranking can be
provided for the features against all other attributes.

Infog,;,(S))

=1+ Info,,, (Class,S),

if Info,, (Class,S,) > Info,,(Class,, S,)
1 +Info,, (Class,S), Else 3)

Step 4: Once the attributes are been ranked, the final
selected subset is produced.

S [m] <« Highest(Info,,, (M)) 4

IV. PROPOSED AUTOMATED
FRAMEWORK

Reuse of components is a process of recovery and
processing. Adjust the components in the component
database. Resolve a specific problem. To solve these
problems, tool users must extract and compare the
requirements, and formats implemented in the search
process and details of adaptation. Although the traditional
component representation language completely removes
copies of implementation details, it does not work during
the search [36].

The formal interface specifications can simplify and
make the assistant search process more precise than
representative components and requirements of the
problem directly. Also, support for formal specifications
and perfect automated mathematical operations can take
into account three forms of interface specification aspects
of reusable components: (i) potential recovery solutions;
(i1) evaluation of the correction; and (iii) architecture to
make changes [37][38].

Recovery and modification of individual components
is a process to find and modify components. Resolve the

Indian Journal of Computer Science * March - April 2022 35

problem given a question and a set of components;
recovery is one or more processes. The component
focuses on more potential solutions. A trivial answer is
the most appropriate model for research activity.
Component sets solve problems. The description and
satisfaction criteria are defined in the research objectives.
When the problems and requirements of the particular
description component are clear, the satisfaction criteria
can be defined by mathematical techniques [39]. The
evaluation of the correction is to determine whether a
component meets the specifications of a problem and
how. Because of problems and components, the
evaluation of the correction is the process to determine
whether a component can be used to solve the problem for
evaluation of the correction. The best simulation is the
satisfaction model of formal specifications and the use of
formal satisfaction standard support for the formal
evaluation of the component correction [40].

Component based development makes a lot of sense
for the software engineering industry. Successful CBD is
widely accepted as a promising method of software reuse.
Recently, the CBD has been presented as a complex and
adaptable solution for the corporate IT system for
developing software. Another new programming
paradigm, feature-oriented programming is designed to
be a modular. It provides the mechanism for the
implementation and execution of the characteristics that
make up the concept of representative fields [41].

Existing studies only analyse a subset of the
Object-oriented concepts and evaluate the design quality
of reusable components. Almost all studies are taken into
account but the important features of Object-oriented
paradigm excessively focuses on implementing
languages C++ and Java. Observation has been made in
this study considering all the basic concepts of the sample
and measuring it at design time as common as possible
(independent of any implementation language).
Measurement trend analysis during the evolution of
industrial strength software components was done over a
period of time. Software metrics help to measure the
properties of a program. The metrics have two types of
reuse-oriented paradigms: (i) Component-Based
Software Development (CBSD); and (ii)
Object-Oriented Software Development (OOSD).
Strategies for developing adaptive reusable components
using top-down domain analysis lead to good quality of
the component [42].

Component-based software metrics are discussed at

36 Indian Journal of Computer Science « March - April 2022

two levels: system level and component level.
Component based research software indicators are not yet
mature. The basic concepts of C language and Python are
similar, and C++ and Java are similar because these are
based on Object-oriented programming. There is lack of
automation indicators, therefore, the number of empirical
studies in this area is also very small. The Object-oriented
paradigm has several concepts such as abstraction,
inheritance, information hidden, polymorphic, coupled,
and cohesiveness which help to develop an Object-
oriented program easily to modify and expand, so it is
easy to reuse. Object-Oriented metrics are discussed at
different levels, such as systems, software packages, and
course levels [43].

The importance of the genetic system cannot be
reduced because some of its functions are too valuable to
give up and its reproduction is too expensive. Developing
agile software is the first choice for all types of small,
medium, and large organizations. The problem facing the
software industry is that the development of agile
software produces specialized products that cannot be
recycled. All these developments have been exhausted.
Therefore, the biggest challenge is to reuse a flexible
development environment [32].

A. Estimated Reuse

Based on the number of criteria corresponding to the total
number of current guidelines, assessment recovery is part
of the assessment process and an assessment report is
presented. Here, we have to automate this process. The
result of this process is to ensure that the project being
restored meets certain important features.

Algorithm 1 : Dependency Based Reusable
Component Identification (DBRCI)

Consider list of components as C[i]

Step-1.
Step-2. For each C[i] analysis the dependencies with
other components
a. If C[i].ExternalSystemCall = C[j]
i. Thenincrease the DependencyRanking{C[i]}
Step- 3. For each DependencyRanking{C[i]}
a.Search Max | DependencyRanking{C[i]}|
b. Find the correlated C[i]

Step-4. ReportTop|C[i]| as prime components for reuse

B. Improving Reuse

Improved reuse is the process that converts and improves
the reuse of components when adding attributes to reuse.
This process is based on the assessment report drawn up
in the previous step. The recyclable enhancer must know
which abstract traits are reusable. Again, automatic
recovery improvement is essential. Eventually, it
produces components that are potentially reusable [33].

Algorithm - 2: Subset Based Max Dependency
Identification (SBMDI)

Step-1. Consider the prime components as Top | C[i] |
Step-2. Foreach Top|C[i] |
a.|ldentify dependency subset as CS[j]
Step-3. For each CS[j]
a. Calculate Max| CS[j] | // |dentify the
maximum dependency subset
Step-4. ReportMax|CS[j]| as Improved Reusable Component Set

C. Find the Right Component

The research process is more than just finding the perfect
match. It is often necessary to locate similar components
because even if the target component requires partial
upgrades and is not so reusable, it can be close enough to
the ideal components, reducing costs and eliminating
many errors. Higher the accuracy, larger the component,
the less likely it is to be reused across multiple
applications. It is hard to find the perfect fit component in
many cases [34].

D. Substitution

As new components become more demanding,
components can be created, modified, and developed.
Suppose we can build a system that allows significant

Algorithm - 3 : Replicable Component Identification
and Substitution (RCIS)

Step-1. Consider the component Subset as Max| CS[j] |
Step-2. Foreach component C[i] in Max | CS[j] |
a.If C[i] == C[i+1] and Max | CS[C[i]] | == Max| CS[C[i+1]]
i. Then Replace C[i] with C[j]
Step-3. Report the Reduced Max| CS[j] |

recovery of altered parts of the component that is
unrealistic. The percentage change must be defined as the
value of the input cost and quality model. Anybody can
use some tools for modifying components.

E. Ingredients

The composition process incorporates the most
demanding requirements for the composition. It must be
possible to express the combined structure of the
independent advanced units with explicit calculations
[35].

A logical reuse repository in the component library
that stores reusable components has the characteristics of
the resources it contains. In order to use the software
repository effectively, the user again needs to know its
content exactly to determine if the library can be satisfied.
The repository is used as a mechanism for storing,
searching, and retrieving components [44]. However,
finding and reusing the right software components is
often very difficult, especially when it comes to many
components and documentation on how to use them.
Development often extends the method used for software
libraries. Reusable composers are defined for developing
components. This applies not only to the code but is also
manufactured in such a way that the products define the
system's lifecycle in the form of specifications,
requirements, and design. The components in question
are intended to be reused in the visualization system and
include code, documentation, design, requirements,
architecture etc. Creating repositories of a reusable
software implementation of a classification scheme is
done to create a library and provide components of the
search and recovery interface. The main requirement is
the compositional classification mechanism. The system
must fulfill three functions: load components, download
components, and search for software components [45].

Object-oriented programming languages provide
another form of reuse. C and Python contain a good
discussion. Object-oriented linguistic attributes
contribute to reuse, including information hiding,
attribute inheritance, and polymorphism. Information
hiding is a reusable mechanism because when a part of
these systems change, it cannot see that the information
that needs to be changed can be reused for the system. By
absorbing variables and methods from the super class,
property inheritance allows creating new subclasses in
super classes. The inheritance process encourages

Indian Journal of Computer Science * March - April 2022 37

specific methods for reusing previously defined data
attributes and processes [46].

V. EXPERIMENTAL RESULTS AND
DISCUSSIONS

This paper proposed a novel approach for component
classification and adaptation. Software developers may
not know what artifacts are available to develop adaptive
software, how the access will be understood and/or how
to combine it, and modify to meet current requirements.
These challenges are contained in each phase of the
modified position [25]. First of all, we need to find some
useful code (via an access mechanism or a delivery
mechanism), understand the recovered information, and
adapt it to current requirements. A tool was developed
that uses the input as source code and provides a series of
components that are adjusted according to the
requirements [47] by using the Apriori algorithm for
developing a tool on a PROMISE Software Engineering
Repository dataset available publicly.

First, using the proposed framework, the initial
dependency rulesets are extracted. The ruleset extraction
results are furnished in Table 1. The result is also
visualized graphically (Fig. 1).

Next, the feature subset extraction is carried out and
the results are given in Table I1.

Here, merit is the entropy or the fitness function result
for each subset based on the correlation of attributes and
the scale denotes the acceptance of the generated
subjects.

Although the reuse of software has been implemented
in some way for many years, it is still a new discipline. It
also covers non-technical issues such as law, economics,
measurement, and organization. This research article
focuses on the technical aspects of software reuse, in
particular on the reuse of software components.
However, it also contains information on other forms of
reuse and distinguishes them [48].

The results are also visualized graphically (Fig. 2).
Our tools provide a classification of connected
components and technologies. This classification goes

TABLE I .
RULE SET EXTRACTION RESULTS

Initial Feature Dependent Feature Rule Confidence Extracted Rule
Independent Team Repository 1 Independent Team (no)
==>Repository (yes)
Type of Software Rewards Policy 1 Type of Software Production (product-
Production family) ==>Rewards Policy (no)
Key Reuse Roles Repository 1 Key Reuse Roles Introduced
Introduced (yes) ==>Repository (yes)
Type of Software Rewards Policy 1 Type of Software Production (product-family).
Production, Repository Repository (yes) ==>Rewards Policy (no)
Rewards Policy Type of Software 0.95 Rewards Policy (no) ==>Type of
Production Software Production (product-family)
Rewards Policy Repository 0.95 Rewards Policy (no) ==>Repository (yes)
Type of Software Production Repository 0.95 Type of Software Production (product-
family) ==>Repository (yes)
Top Management Commitment Repository 0.95 Top Management Commitment
(yes) ==>Repository (yes)
Repository, Rewards Policy Type of Software 0.95 Repository (yes). Rewards Policy (no) ==>
Production Type of Software Production (product-family)
Type of Software Production, Repository 0.95 Type of Software Production (product-family).

Rewards Policy

Repository Rewards Policy (no) ==>Repository (yes)

38 Indian Journal of Computer Science « March - April 2022

Fig. 1. Rule-Based Component Reusability Analysis

TABLE II.
FEATURE SUBSET EXTRACTION RESULTS

Subset Name Subset Description Subset Count Merit Scale
Subl 157911131822 8 0.48393 0.77985
Sub2 157911131517182226 11 0.45797 0.47728
Sub3 1591113202122 8 0.43825 0.24738
Sub4 15791113182122 9 0.4565 0.46008
Sub5 57891314182226 9 0.41703 0
Sub6 157911131822 8 0.48393 0.77985
Sub7 13579111318222526 11 0.45921 0.49168
Sub8 157911131822 8 0.48393 0.77985
Sub9 135791011131822 10 0.45849 0.48329
Sub10 159111316182022 9 0.44171 0.2877
Sub11 1357910111317192225 12 0.43172 0.17122
Sub12 157911131822 8 0.48393 0.77985
Sub13 1578911131822 9 0.4782 0.71306
Sub14 15789111213182026 11 0.44355 0.30911
Sub15 145711151622 8 0.41875 0.02004
Sub16 135891112131718222426 13 0.42833 0.13172
Sub17 157111522 6 0.46345 0.54117
Sub18 14579111318222628 11 0.4265 0.11039
Sub19 157911131822 8 0.48393 0.77985

Indian Journal of Computer Science * March - April 2022 39

Fig. 2. Feature Subset Analysis

TABLE lII.
FEATURE SUBSET SUBSTITUION RESULT
Subset Name Subset Description Subset Count Merit
Sub_Proposed 1,5,7,9,22 5 0.492

Fig. 3. Component Replacement Results

beyond the source code components and covers all
aspects of distributed information underlining the
components which import and express the source code.
Software components are more than just functions and
classes having a group together to get the classification
[49].

Like software reuse, software components will go
beyond the source code. The coverage of the components
is wider than the structure and model. Our tools show the

40 Indian Journal of Computer Science « March - April 2022

success of the reuse of components and evaluate using the
proposed classification scheme [50].

Finally, the component replacement results are
analysed in Table 3 and Fig. 3 on the standard Kaggle
dataset[51].

Finally, with the discussion on the highly satisfiable
obtained results, this work presents the conclusion in the
next section.

VI. CONCLUSION

Association rule learning is a standard Al based
technique for finding fascinating relations between
factors with regards to extensive databases. It is proposed
to distinguish solid principles found in databases utilizing
a few proportions of intriguing quality. This standards
based methodology additionally creates new principles
as it breaks down more information. A definitive
objective expecting a sufficiently substantial dataset is to
enable a machine to impersonate the human Cerebrum's
element extraction and theoretical association capacities
from new uncategorized information. This paper will
enhance the ability to adjust components by combining
expressiveness, effectiveness, and reliability.

VIl. CURRENT AND FUTURE
DEVELOPMENT

The current research outcomes are challenged by the
software development industry with the arguments of
reliability as different types of applications from different
domain demand unique specifications and standards to be
met. Also, the components which are to be reused for
other specifications must match the compliances of that
specification. Considerably, identification of the reusable
components is always a challenge and it is observed that
the identification of the flexible components for which
matching the domain specification is easy is also a highly
complex process. Finally, finding the ideal coupling point
of the identified modules is also a significant challenge.
Future enhancement for this work is to develop a
framework for the identification of the flexible
components for reuse in the software development
lifecycle and identifies the unique coupling points of
these components.

AUTHOR’S CONTRIBUTION

Dr. Sampath Korra conceived the original idea of the
paper. He collected data, analysed, and interpreted the
results. He drafted the manuscript and revised it critically
for important intellectual content.

CONFLICT OF INTEREST

He author certifies that he has no affiliation or

involvement with any organization or entity in which he
has any financial or non-financial interest in the subject
matter or material discussed in this manuscript.

FUNDING ACKNOWLEDGEMENT

The authors received no financial support for the
research, authorship and/or publication of this article.

REFERENCES

[1] H. Algestam, M. Offesson, and L. Lundberg, "Using
components to increase maintainability in a large
telecommunication system," in 9th Asia-Pacific Softw.
Eng. Conf., 2002, pp. 65-73, doi:
10.1109/APSEC.2002.1182976

[2] M. T. Baldassarre, A. Bianchi, D. Caivano, C. A.
Visaggio, and M. Stefanizzi, “Towards a maintenance
process that reduces software quality degradation thanks
to full reuse,” in Proc. 8th IEEE Workshop Empirical
Stud. Softw. Maintenance (WESS’02),2002,p. 5

[3] V. R. Basili, “Viewing maintenance as reuse-oriented
software development,” IEEE Softw., vol. 7, no. 1, pp.
19-25, Jan. 1990, doi: 10.1109/52.43045

[4] K. H. Bennett and V. T. Rajlich, “Software
maintenance and evolution: A roadmap,” in Proc. Conf.
Future Softw.Eng., Assoc. Comput. Machinery, New
York, NY, USA, 2000, pp. 73-87, doi:
10.1145/336512.336534

[5] D. Damian, J. Chisan, L. Vaidyanathsamy and Y. Pal,
"An industrial case study of the impact of requirements
engineering on downstream development," in 2003 Int.
Symp. Empirical Softw. Eng. Proc., pp. 4049, doi:
10.1109/ISESE.2003.1237963

[6] M. Jorgensen, “The quality of questionnaire based
software maintenance studies,” in ACM SIGSOFT Softw.
Eng. Notes, vol. 20, no. 1, 1995, pp. 71-73, doi:
10.1145/225907.225916

[7] M. M. Lehman, “Laws of software evolution
revisited,” In Montangero, C. (Eds.) Softw. Process
Technol. EWSPT 1996. Lecture Notes Comput. Sci., vol.
1149. Springer, Berlin, Heidelberg, doi:
10.1007/BFb0017737

Indian Journal of Computer Science * March - April 2022 41

[8] B. P. Lientz, E. B. Swanson, G. E.
Tompkins,”Characteristics of application software

maintenance,” Commun. ACM, vol. 21, no. 6, pp.
466-471,1978,doi: 10.1145/359511.359522

[9]Y. K. Malaiya and J. Denton, "Requirements volatility
and defect density,” in Proc. 10th Int. Symp. Softw. Rel.
Eng. (Cat. No.PR00443), 1999, pp. 285-294, doi:
10.1109/ISSRE.1999.809334

[10] G. Basalla, The evolution of technology. New York,
NY, USA: Cambridge Univ. Press, 1989, doi:
10.1017/CBO9781107049864

[11] J. S. Brown and P. Duguid, The social life of inf.
Harvard Bus. School Press, Boston, MA.

[12] R. Dawkins, The blind watchmaker, W.W. Norton
and Company, New York — London, 1987.

[13] G. Fischer, "Domain-oriented design
environments," Automated Softw. Eng., vol. 1, no. 2, pp.
177-203, 1994, doi: 10.1007/BF00872289

[14] J. Greenbaum and M. Kyng, “Knowledge-based
design environments,” Ph.D. Dissertation, Dept. of
Comput. Sci., Univ. of Colorado at Boulder, Boulder, Co.
(Eds.),2011,doi: 10.3727/108812897792458281

[15] J. Greenbaum and M. Kyng, Des. work :
Cooperative Des. Comput. Syst., Hillsdale, NJ, USA:
Lawrence Erlbaum Associates Inc..

[16] A. Henderson and M. Kyng, "There's no place like
home: continuing design in use," in J. Greenbaum & M.
Kyng (Eds.), Des. at Work: Cooperative Des. Comput.
Syst., Hillsdale, New Jersey, NJ, USA: Lawrence
Erlbaum Associates, 1991, pp. 219-240.

[17] S. R. Henninger, “Locating relevant examples for
example-based software design,” Ph. D. Dissertation,
Dept. of Comput. Sci., Univ. of Colorado at Boulder,
Boulder, CO, USA, 1993.

[18] W. Kintsch, Comprehension: A paradigm for
cognition, Cambridge Univ. Press, Cambridge, England.

[19] B. A. Nardi, 4 small matter of program, Cambridge,
MA, USA: MIT Press, 1993.

[20] B. H. Liskov and S.N. Zilles, “Specification

42 Indian Journal of Computer Science « March - April 2022

techniques for data abstractions,” IEEE Trans. Sofiw.
Eng., vol. SE-1, no. 1, March 1975, pp. 7-19, doi:
10.1109/TSE.1975.6312816

[21] K. J. Sullivan and J. C. Knight, “Experience
assessing an architectural approach to large-scale,
systematic reuse,” in Proc. 18th Int. Conf. Softw. Eng.,
Berlin, May 1996, pp. 220-229.

[22] D. C. Schmidt, “Why software reuse has failed and
how to make it work for you.” [Online]. Available:

http://www.dre.vanderbilt.edu/~schmidt/reuse-
lessons.html Accessed: Aug. 18,2002.

[23] D. E. Harms and B. W. Weide, “The influence of
software reuse on Programming Language Design,” The
Ohio State Univ., 1990.

[24] S. Korra, D. Vasumathi, and A. Vinayababu, “An
approach for cognitive software reuse framework,” in
2018 2nd Int. Conf. Intell. Comput, Control Syst., pp. 1-6.
IEEE, June 2018, doi: 10.1109/ICCONS.2018.8662897

[25] D'Alessandro, M. Iachini, and P. L. Martelli, “A the
generic reusable component: An approach to reuse
hierarchical OO designs,” Sofiw. Rseusability, 1993.

[26] E. M. Dusink, “Cognitive psychology, software
psychology, reuse and software engineering, technical
report,” TU Delft, Delft, The Netherlands, 1991.

[27] E.M. Dusink, “Testing a Software Engineering
method statistically. Technical report,” TWI, TU Delft,
Delft, the Netherlands, 1991.

[28] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch,
I. Tavakoli, and L. O’ Hara, Automated Sofiw. Eng., vol.
3,pp. 285-307, 1996, doi: 10.1007/BF00132570

[29] A. Kumar, “Software reuse library based proposed
classification for efficient retrieval of components,” Int.
J. Adv. Res. Comput. Sci. Sofiw. Eng., vol. 3, pp.
884-890,2013.

[30] J.-M. Morel, "The REBOOT approach to software
reuse," in Software Reuse: The Future, The BCS Reuse
SIG1995 Workshop, 1995.

[31]J. Bosch, Design and use of software architectures:
Adopting and evolving a product-line approach, New
York, NY: Pearson Education, 2000.

[32] M. D. Jonge, 7o reuse or to be reused techniques for
component composition and construction, pp. 57-58,
2003.

[33] R. A. Flores-Mendez, Towards a standardization of
multi-agent system framework, 1999.

[34] G. H. Campbell, Jr. “Adaptable Components,” in
Proc. 21st Intl. Conf. Soft. Eng., Assoc. Comput.
Machinery, 1999, pp. 685-686.

[35] T. P. Kelly and B. R. Whittle, “Applying lessons
learnt from software reuse to other domains,” in 7tk
Annu. Workshop Softw. Reuse, Aug. 28-30, 1995, St.
Charles, Illinois, USA.

[36] M. Cioca and L.-1.Cioca, "Multi-criterion analysis of
reference architectures and modeling languages used in
production systems modeling," in INDIN '05. 2005 3rd
IEEE Int. Conf. Ind. Inform, 2005, pp. 230-233,
doi: 10.1109/INDIN.2005.1560381

[37] M. Ionita, D. Hammer, and J. Obbink, “Scenario-
based software architecture evaluation methods: An
overview,” 2002.

[38] P. J. Modi, S. Mancoridis, W. M. Mongan, W. Regli,
and [. Mayk, “Towards a reference model for agent based
systems,” in Proc. Sth Int. Joint Conf. Auton. Multiagent
Syst., May 2006, pp. 1475-1482, doi:
10.1145/1160633.1160922

[39] R. W. Collier, “Agent factory: A framework for the
engineering of agent-oriented applications,” Ph.D.
Thesis, Univ. College, Dublin, Ireland, 2001.

[40] R. N. Taylor, W. Tracz, and L. Coglianese, “Software
development using domain-specific software
architectures: : CDRI A011—a curriculum module in the
SEI style,” ACM SIGSOFT Softw. Eng. Notes, vol. 20,
no. 5, Dec. 1995, pp. 27-38, doi:
10.1145/217030.217034

[41] D. E. Harms, “The influence of software reuse on
Programming Language Design,” The Ohio State Uniyv.,
1990.

[42] S. Korra, D. Vasumathi, and A. Vinaybabu, “A novel
approach for building adaptive components using

top-down analysis,” Int. J. Eng. Technol., vol. 7,1n0.4.19,
pp. 1036-1040, 2018, doi: 10.14419/ijet.v7i4.19.28282

[43] G. Kakarontzas, E. Constantinou, A. Ampatzoglou,
and I. Stamelos, “Layer assessment of object-oriented
software,” J. Syst. Softw., vol. 86, no. 2, pp. 349-366,
Feb.,2013,doi: 10.1016/j.jss.2012.08.041

[44] A. J. Ko, R. DeLine, and G. Venolia, “Information
needs in collocated software development teams,” in
Proc. 29th Int. Conf. Softw. Eng., pp. 344-353, May
20-26,2007, doi: 10.1109/ICSE.2007.45

[45] C. W. Krueger, “Software reuse,” ACM Comput.
Surveys, vol. 24, no. 2, pp.131-183, June 1992, doi:
10.1145/130844.130856

[46] O. A. L. Lemos, S. Bajracharya, J. Ossher, P. C.
Masiero, and C. Lopes, “A test-driven approach to code
search and its application to the reuse of auxiliary
functionality,” Inf. Softw, Technol., vol. 53, no. 4, pp.
294-306,April 2011, doi: 10.1016/j.infsof.2010.11.009

[47] J. Maras, M. Stula, and I. Crnkovi¢, “Towards
specifying pragmatic software reuse,” in Proc. 2015 Eur.
Conf. Softw. Architecture Workshops, Sep. 07-11,
Dubrovnik, Cavtat, Croatia, pp. 1-4, 2015, Art. No. 54,
doi: 10.1145/2797433.2797489

[48] N. Niu, J. Savolainen, Z. Niu, M. Jin and J. -R. C.
Cheng, “A systems approach to product line requirements
reuse.,” IEEFE Syst. J., vol. 8, no. 3, pp. 827-836, 2014,
doi: 10.1109/JSYST.2013.2260092

[49] N. Niu, X. Jin, Z. Niu, J. C. Cheng, L. Li, and M. Y.
Kataev, "A Clustering-Based Approach to Enriching
Code Foraging Environment," [EEE Trans. Cybernetics,
vol. 46, no. 9, pp. 1962-1973, Sept. 2016, doi:
10.1109/TCYB.2015.2419811

[50] N. Niu, A. Mahmoud, and G. Bradshaw,
"Information foraging as a foundation for code
navigation: NIER track," in 2011 33rd Int. Conf. Sofiw.
Eng., 2011, pp.816-819,doi: 10.1145/1985793.1985911

[51] “RTTool Kaggle Dataset,” [Online]. Available:
https://github.com/aserg-
ufmg/RTTool/tree/master/src/org/scitools/metrics

Indian Journal of Computer Science March - April 2022 43

About the Author

Dr. Sampath Korra is Associate Professor with Department of Computer Science and Engineering at Sri
Indu College of Engineering and Technology(A), Sheriguda, Ibrahimpatnam, Hyderabad, India. He
completed Ph.D. in Computer Science and Engineering from Jawaharlal Nehru Technological University,
Kakinada (JNTUK), Andhra Pradesh, India in the year 2020. He completed M.Tech. in Software Engineering
from Kakatiya University, Warangal in 2006 and B.Tech. in Computer Science and Information Technology
from JNT University, Hyderabad in 2004. He qualified GATE-2003 and GATE 2004. He certified as Java
Programmer (SCJP) and Python Programmer from Microsoft. He has 15 years of teaching experience in
various Computer Science and Engineering subjects at Under-Graduate and Post-Graduate level. He has 12
years of research experience including teaching. He has published many research articles in reputed
journals and conferences. He is the author of 3 textbooks and has 4 patents to his credit. He has participated
in many conferences, seminars, workshops/FDPs, and webinars related to research. His current research
interests are Software Engineering, Machine Learning, Artificial Intelligence, Data mining, Data Science,
and Bio-Informatics.

44 Indian Journal of Computer Science « March - April 2022

