A Step Toward Digital Inclusion in Agriculture : Managing ICT Capacity-Building and Measuring Outcomes Among Smallholder Farmers

Authors

  •   Jampala Maheshchandra Babu Assistant Professor, Department of Business Administration, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur - 303 007, Rajasthan ORCID logo https://orcid.org/0000-0002-0456-3703
  •   Arun Yadav Promotor, Sukhayu Herbotech, <sup>2</sup>Vice President, AQURA Enviro Projects Pvt. Ltd., 142 Kasturba Nagar, Gautam Marg, Ajmer Road, Jaipur - 302 019, Rajasthan
  •   Tina Shivnani Associate Professor (Corresponding Author), Department of Business Administration, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur - 303 007, Rajasthan ORCID logo https://orcid.org/0000-0003-1962-2486

DOI:

https://doi.org/10.17010/ijf/2025/v19i8/175234

Keywords:

digital agriculture, farmer digital literacy, sustainable agriculture, socio-demographic analysis, digital divide, agricultural technology adoption.
JEL Classification Codes : Q01, Q11, Q12
Publication Chronology: Paper Submission Date : February 10, 2025 ; Paper sent back for Revision : May 15, 2025 ; Paper Acceptance Date : July 28, 2025 ; Paper Published Online : August 14, 2025

Abstract

Purpose : This study examined the impact of ICT training on small-scale farmers’ adoption of digital agricultural technologies in India. It assessed the effectiveness of focused capacity-building initiatives on their digital participation.

Methodology : Primary data was collected through structured surveys before and after training in Jaipur Tehsil, Rajasthan. The sample included diverse socio-demographic profiles. A comparative analysis assessed changes in digital tool use, while factor analysis identified key dimensions of digital adoption. Descriptive statistics and comparative metrics measured shifts in engagement.

Findings : ICT training significantly improved farmers’ digital engagement, especially in government portals, mandi apps, and eNAM. Trust in digital tools and expert consultations also increased, though crop protection and pest control app usage remained low.

Practical Implications : The study highlighted the need for ongoing literacy initiatives to address structural digital disparities and facilitate inclusive agricultural digital transformation.

Originality : The study identified structural barriers influencing ICT use among small-scale farmers by combining socio-demographic variables with digital engagement. Pre-training responses revealed a digital divide, with minimal engagement in government agriculture websites, mandi apps, and weather forecast tools. Farmers preferred traditional knowledge sources due to trust, digital literacy, and cost. Following the training, government websites, social media apps, and eNAM portals experienced increased usage, while farmer-to-expert consultations and video conferencing also rose, indicating growing confidence in digital tools. Younger and more educated farmers were more likely to adopt these applications, while gender disparities persisted due to limited digital accessibility. The intervention effectively enhanced digital adoption and improved adaptability.

Downloads

Download data is not yet available.

Published

2025-08-14

How to Cite

Babu, J. M., Yadav, A., & Shivnani, T. (2025). A Step Toward Digital Inclusion in Agriculture : Managing ICT Capacity-Building and Measuring Outcomes Among Smallholder Farmers. Indian Journal of Finance, 19(8), 68–88. https://doi.org/10.17010/ijf/2025/v19i8/175234

Issue

Section

Articles

References

1) Abioye, D. O., Popoola, O., Akande, A., Fadare, D. A., Omitoyin, S. A., Yinusa, B., & Kolade, O. O. (2024). Farmers' willingness to adopt digital application tools in Ogun State, Nigeria. Journal of Strategy and Management. https://doi.org/10.1108/jsma-06-2023-0135

2) Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), Article ID e22601. https://doi.org/10.1016/j.heliyon.2023.e22601

3) Akhter, A., Nabi, A., Narayan, S., Akhter, S., Lone, B. A., Yousuf, V., Shakeel, B., Ramzan, S., Zargar, K. A., Farooq, I., Indrabi, S. A., Javeed, I., Sultan, A., & Farwah, S. (2024). Digital technology: A game changer in vegetable cultivation. Annual Research & Review in Biology, 39(2), 30–52. https://doi.org/10.9734/arrb/2024/v39i230631

4) Akrofi, N. A., Sarpong, D. B., Somuah, H. A., & Osei-Owusu, Y. (2019). Paying for privately installed irrigation services in Northern Ghana: The case of the smallholder Bhungroo irrigation technology. Agricultural Water Management, 216, 284–293. https://doi.org/10.1016/j.agwat.2019.02.010

5) Ali, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers' decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149–159. https://doi.org/10.1016/j.ijinfomgt.2010.07.008

6) Anupama, R., & Bansal, S. (2012). Information technology: The change agent for paradigm of education - With special reference to Indian conditions. Prabandhan: Indian Journal of Management, 5(2), 27–34. https://doi.org/10.17010/pijom/2012/v5i2/60132

7) Arora, A. K., & Rathi, P. (2019). Determinants for the adoption of digitalization by manufacturing SMEs in India: An empirical study. Prabandhan: Indian Journal of Management, 12(8), 7–21. https://doi.org/10.17010/pijom/2019/v12i8/146410

8) Awuor, F. M., & Ireri, D. M. (2022). E-agriculture framework to improve agricultural productivity: Literature review. Modern Economy, 13(08), 1126–1138. https://doi.org/10.4236/me.2022.138059

9) Balkrishna, A., Pathak, R., Kumar, S., Arya, V., & Singh, S. K. (2023). A comprehensive analysis of the advances in Indian digital agricultural architecture. Smart Agricultural Technology, 5, Article ID 100318. https://doi.org/10.1016/j.atech.2023.100318

10) Bhat, P. P., Prasad, R., Anil, K., Jadhav, A., Manohar, K. N., Rajesh, C. M., & Reddy, S. L. (2024). The role of information and communication technology in enhancing the effectiveness of agricultural extension programs worldwide: A review. Journal of Scientific Research and Reports, 30(7), 963–976. https://doi.org/10.9734/jsrr/2024/v30i72206

11) Bhattacharyya, D., Joshua, E. S., Rao, N. T., & Kim, T.-H. (2023). Hybrid CNN-SVM classifier approaches to process semi-structured data in sugarcane yield forecasting production. Agronomy, 13(4), 1169. https://doi.org/10.3390/agronomy13041169

12) Biswas, S., & Poddar, S. (2024). Application of IoT in smart farming and precision farming: A review. In Fog computing for intelligent cloud IoT systems (pp. 245–277). John Wiley & Sons, Inc. https://doi.org/10.1002/9781394175345.ch11

13) Budhathoki, M., Tunca, S., Martinez, R. L., Zhang, W., Li, S., Le Gallic, B., Brunsø, K., Sharma, P., Eljasik, P., Gyalog, G., Panicz, R., & Little, D. (2024). Societal perceptions of aquaculture: Combining scoping review and media analysis. Reviews in Aquaculture, 16(4), 1879–1900. https://doi.org/10.1111/raq.12927

14) Chandraker, A. K., Victor, V. M., & Khalkho, D. (2014). A study on status of farm power and scope of farm mechanization in the agro-climatic zone of Chhattisgarh plains. Prabandhan: Indian Journal of Management, 7(11), 40–48. https://doi.org/10.17010/pijom/2014/v7i11/59272

15) Das, A., Saha, S., Layek, J., Babu, S., Saxena, R., & Ramkrushna, G. I. (2023). Agricultural technologies. In P. K. Ghosh, A. Das, R. Saxena, K. Banerjee, G. Kar, & D. Vijay (eds.), Trajectory of 75 years of Indian agriculture after independence (pp. 57–78). Springer Nature. https://doi.org/10.1007/978-981-19-7997-2_4

16) Diaz, A. C., Sasaki, N., Tsusaka, T. W., & Szabo, S. (2021). Factors affecting farmers' willingness to adopt a mobile app in the marketing of bamboo products. Resources, Conservation & Recycling Advances, 11, Article ID 200056. https://doi.org/10.1016/j.rcradv.2021.200056

17) Hrustek, L. (2020). Sustainability driven by agriculture through digital transformation. Sustainability, 12(20), 8596. https://doi.org/10.3390/su12208596

18) Jindal, N., Sehrawat, A., & Medury, Y. (2016). An analysis of India's need of capacity building for e-governance. Prabandhan: Indian Journal of Management, 9(6), 47–59. https://doi.org/10.17010/pijom/2016/v9i6/95022

19) Kang, S., Ait Sidhoum, A., Frick, F., Sauer, J., & Zheng, S. (2023). The impact of information and communication technology on the technical efficiency of smallholder vegetable farms in Shandong of China. Q Open, 3(1), Article ID qoad017. https://doi.org/10.1093/qopen/qoad017

20) Karunathilake, E. M., Le, A. T., Heo, S., Chung, Y. S., & Mansoor, S. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. https://doi.org/10.3390/agriculture13081593

21) Kaur, N., & Arora, P. (2020). Institutional interventions for enhancing innovation amongst students: The experiential moderator. Prabandhan: Indian Journal of Management, 13(10–11), 27–45. https://doi.org/10.17010/pijom/2020/v13i10-11/156007

22) Khosla, R. (2012). Production efficiency of the selected agro industries in Punjab. Prabandhan: Indian Journal of Management, 5(2), 21–26. https://doi.org/10.17010/pijom/2012/v5i2/60129

23) Kumar, P., & Kumra, R. (2021). Rural self employment training institutes in India: A systematic review. Prabandhan: Indian Journal of Management, 14(10), 38–49. https://doi.org/10.17010/pijom/2021/v14i10/166643

24) Kumar, S., Yadav, A., Kumar, A., Hasanain, M., Shankar, K., Karan, S., Rawat, S., Sinha, A., Kumar, V., Gairola, A., Prajapati, S. K., & Dayal, P. (2023). Climate smart irrigation practices for improving water productivity in India: A comprehensive review. International Journal of Environment and Climate Change, 13(12), 333–348. https://doi.org/10.9734/ijecc/2023/v13i123689

25) Mbongo, L., & Djoumessi, Y. F. (2024). Connecting the fields: How ICT improve agricultural productivity in sub‐Saharan Africa. Review of Development Economics, 28(3), 888–903. https://doi.org/10.1111/rode.13084

26) Mdoda, L., & Mdiya, L. (2022). Factors affecting the using information and communication technologies (ICTs) by livestock farmers in the Eastern Cape province. Cogent Social Sciences, 8(1), Article ID 2026017. https://doi.org/10.1080/23311886.2022.2026017

27) Mouratiadou, I., Lemke, N., Chen, C., Wartenberg, A., Bloch, R., Donat, M., Gaiser, T., Basavegowda, D. H., Helming, K., Hosseini Yekani, S. A., Krull, M., Lingemann, K., Macpherson, J., Melzer, M., Nendel, C., Piorr, A., Shaaban, M., Zander, P., Weltzien, C., & Bellingrath-Kimura, S. D. (2023). The digital agricultural knowledge and information system (DAKIS): Employing digitalisation to encourage diversified and multifunctional agricultural systems. Environmental Science and Ecotechnology, 16, Article ID 100274. https://doi.org/10.1016/j.ese.2023.100274

28) Ochieng, J., Schreinemachers, P., Ogada, M., Dinssa, F. F., Barnos, W., & Mndiga, H. (2019). Adoption of improved amaranth varieties and good agricultural practices in East Africa. Land Use Policy, 83, 187–194. https://doi.org/10.1016/j.landusepol.2019.02.002

29) Patel, R., & Patel, N. (2021). Does microfinance empower women from economic, social, and political perspectives?: Empirical evidence from rural Gujarat. Prabandhan: Indian Journal of Management, 14(3), 32–48. https://doi.org/10.17010/pijom/2021/v14i3/158154

30) Rahman, M. M., & Huq, H. (2023). Implications of ICT for the livelihoods of women farmers: A study in the Teesta River Basin, Bangladesh. Sustainability, 15(19), 14432. https://doi.org/10.3390/su151914432

31) Rajkhowa, P., & Baumüller, H. (2024). Assessing the potential of ICT to increase land and labour productivity in agriculture: Global and regional perspectives. Journal of Agricultural Economics, 75(2), 477–503. https://doi.org/10.1111/1477-9552.12566

32) Rajyalakshmi, P., & Nayak, V. M. (2024). E-agriculture and rural development in India. Educational Administration: Theory and Practice, 30(5), 8884–8889. https://doi.org/10.53555/kuey.v30i5.3364

33) Roy, P., Maji, S., Jirli, B., Singh, P., & Nain, M. S. (2024). Scopus indexed Indian Journal of Extension Education: Crafting improvement strategy through altmetric and bibliometric analysis. Indian Journal of Extension Education, 60(2), 1–10. https://doi.org/10.48165/ijee.2024.60201

34) Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming towards Agriculture 5.0: A review on crop data management. Agronomy, 10(2), 207. https://doi.org/10.3390/agronomy10020207

35) Sam Luther, C. T. (2010). India vs China in the agricultural sector—An empirical study. Prabandhan: Indian Journal of Management, 3(3), 46–54. https://doi.org/10.17010/pijom/2010/v3i3/61127

36) Subramanian, A. (2021). Harnessing digital technology to improve agricultural productivity? PLoS ONE, 16(6), Article ID e0253377. https://doi.org/10.1371/journal.pone.0253377

37) Sundar, C. B., & Asokhan, M. (2023). Pivotal role of drones in agriculture – A review. Asian Journal of Agricultural Extension, Economics & Sociology, 41(4), 131–140. https://doi.org/10.9734/ajaees/2023/v41i41888

38) Takahashi, R., Todo, Y., Kim, Y. R., Kashiwagi, Y., & Tsegaye, D. L. (2025). Using social media for agricultural information dissemination: The role of informant-recipient homogeneity. Journal of Development Effectiveness, 17(2), 178–205. https://doi.org/10.1080/19439342.2024.2425075

39) Wonde, K. M., Tsehay, A. S., & Lemma, S. E. (2022). Training at farmers training centers and its impact on crop productivity and households' income in Ethiopia: A propensity score matching (PSM) analysis. Heliyon, 8(7), e09837. https://doi.org/10.1016/j.heliyon.2022.e09837

40) Wyche, S., & Steinfield, C. (2016). Why don't farmers use cell phones to access market prices? Technology affordances and barriers to market information services adoption in rural Kenya. Information Technology for Development, 22(2), 320–333. https://doi.org/10.1080/02681102.2015.1048184

41) Xu, Z., Adeyemi, A. E., Catalan, E., Ma, S., Kogut, A., & Guzman, C. (2023). A scoping review on technology applications in agricultural extension. PLoS ONE, 18(11), Article ID e0292877. https://doi.org/10.1371/journal.pone.0292877

42) Yogeshwari, M., & Prasanth, A. (2024). Smart dust technology for monitoring and control systems in smart agriculture and crop surveillance systems. In R. K. Dhanaraj, B. Balusamy, P. Samuel, M. Sathyamoorthy, & A. K. Bashir (eds.), Computer vision in smart agriculture and crop management (pp. 123–137). John Wiley & Sons, Inc. https://doi.org/10.1002/9781394186686.ch6

43) Zanello, G., Srinivasan, C. S., & Shankar, B. (2014). Transaction costs, information technologies, and the choice of marketplace among farmers in Northern Ghana. The Journal of Development Studies, 50(9), 1226–1239. https://doi.org/10.1080/00220388.2014.903244