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ASTM  American Society for Testing and 
Materials.

MPa  Mega Pascal.
ANN  Artificial Neural Networks.
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SCR Sudden Cooling Regime.
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Abstract

Prediction is made on strength, near surface characteristics, and modulus of elasticity of hybrid fibre reinforced blended 
concretes subjected to sustained elevated temperatures for 3 hours retention period using artificial neural networks (ANN). 

o o oTemperature ranges from 100 C to 1000 C at an interval of 100 C and after that, specimens are subjected to two cooling regimes, that 
is, sudden and gradual. These specimens are subjected to tests for compressive strength, split tensile strength, water absorption, 
sorptivity, and modulus of elasticity. For building ANN models, available 440 experimental results produced with eight different 
mixture proportions are used. Two major artificial neural networks are used for prediction. One is for all the concrete combinations 
with sudden cooling [SCR] and other is with gradual cooling [GCR]. The data used in the multilayer feed forward neural network 
models (architecture, 8–15–1) is designed with eight input parameters covering temperature [T], cement [C], fly ash [FA], GGBFS 
[GGBFS] Silica Fume [SF], galvanized iron fibre [GIF] polypropylene fibre [PPF], and cooling regime [SCR or GCR]. These five tests 
are the outputs and they are predicted individually for both the cooling regimes. It shows that neural networks have high potential 
for predicting the results.
 
Keywords : Artificial neural networks, cooling regime, modulus of elasticity, near surface characteristics, strength, sustained 
elevated temperatures. 
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NOMENCLATURE
C  Cement.
FA  Fly Ash.
GGBFS  Ground Granulated Blast Furnace Slag.
SF  Silica Fume.
GIF  Galvanized Iron Fibre.
PPF Polypropylene Fibre.
RT  Room Temperature.
IS  Indian Standards.
BS  British Standards.
ASTM  American Standard Test Method.
OPC  Ordinary Portland Cement.
ISO  International Organization for 

Standardization.
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W   Predicted water absorption in %ap
0.5

S  Experimental sorptivity in mm/min .e 
0.5S   Predicted sorptivity in mm/min .p

E  Experimental modulus of elasticity in Mpa.ce 

E  Predicted modulus of elasticity in Mpa.cp 

I. INTRODUCTION

A. General

Life safety in case of fire is one of the major 
considerations in the design of structures. It is necessary 
to have complete knowledge about the behavior of all 
construction materials before using them in structural 
elements. The extensive use of concrete as a structural 
material in public utility buildings, multistorey 
buildings, exposed to the elements of terrorism 
necessitated the need to study the behavior of concrete at 
high temperature, and its durability for the required 
needs [1, 2].

Thermal property of concrete is an important aspect 
while dealing with durability of concrete structure 
exposed to elevated temperature. Damage to the 
structures depends on the intensity, duration of exposure, 
and also on the combustibility of the materials used in 
construction [3]. Concrete is incombustible, thus, giving 
it an advantage over materials like structural clay tile 
which expands much more rapidly than steel, and hence, 
tends to fail by reason of the destruction of the bond 
caused by unequal expansion. The rate of heat 
conductivity of concrete is very low, partly due to its 
porosity and consequent air content, and partly due to the 
dehydration of water. This later action increases the 
porosity and the conductivity of the concrete and leads to 
dehydration [4, 5].

Portland cement concrete is widely used in 
construction of buildings; it helps to satisfy the need for 
public safety in case of the fire hazards [6, 7], and also the 
addition of pozzolanas enhances the microstructure & 
phase composition when the concrete is under 
fire–resistance studies [8]. Similarly, addition of steel 
fibres helps to resist the pore pressure created and arrests 
the cracks and expansion, thus increasing the tensile 
strength. The addition of polypropylene fibres 
minimizes fire induced spalling of concrete [9]. Thus, it 
is necessitated to study the behavior of hybrid fibre 
reinforced blended concrete when subjected to high 
temperatures. 

ANN technology, a sub–field of artificial intelligence 

is being used to solve a wide variety of problems in Civil 
Engineering applications [10–17]. The other important 
properties of ANN is its correct or nearly correct response 
to incomplete tasks, its extraction of information from 
noisy or poor data, and its production of generalized 
results from novel cases. These capabilities make ANN a 
very powerful tool to solve many civil engineering 
problems, particularly where data may be complex or in 
an insufficient amount [16]. The basic strategy for 
developing an ANN system based model for material 
behavior is to train an ANN system on the results of a 
series of experiments using that material [11–15]. If the 
experimental results include the relevant information 
about the material behavior, then the trained ANN system 
will contain enough information about  behavior of the 
material to qualify as a material model [12–15]. Such a 
trained ANN system not only would be able to reproduce 
the experimental results, but it would also be able to 
approximate the results in other experiments through its 
generalization capability [11–15]. The ANN analysis was 
performed by using MATLAB 2013 software.

B. Objectives

The main objective of the research is to predict 
strength, near surface characteristics and modulus of 
elasticity of hybrid fibre reinforced blended concretes 
subjected to sustained elevated temperatures for 3 hours 
retention period using artificial neural networks (ANN). 

oThe temperatures considered for the study were 30 C 
o o o o o o o(RT), 100 C, 200 C, 300 C, 400 C, 500 C, 600 C, 700 C, 

o o o800 C, 900 C, and 1000 C. In this study, after the 
temperature application, specimens were subjected to 
two cooling regimes viz., sudden and gradual. 

The concrete combinations used are listed in Table I. 
After the temperature test and cooling regimes, these 
specimens were tested for compressive strength [f ], split ce

tensile strength [f ], water absorption [W ], sorptivity te ae

[S ], and modulus of elasticity [E ] tests. e ce

By taking these experimental results, ANN analysis 
was performed as follows: 

For building ANN models, available 440 
experimental results produced with 8 different mixture 
proportions were used. Two major artificial neural 
networks were used for prediction. One was for all the 
concrete combinations with sudden cooling [SCR], and 
the other one was with gradual cooling [GCR]. The data 
used in the multilayer feed forward neural network 
models (architecture, 8–15–1) was designed with eight 
input parameters covering temperature [T], cement [C], 
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fly ash [FA], GGBFS [GGBFS], Silica Fume [SF], 
galvanized iron fibre [GIF], polypropylene fibre [PPF], 
and cooling regime [SCR or GCR]. Compressive 
strength [f ], split tensile strength [f ], water absorption cp tp

[W ], sorptivity [S ] and modulus of elasticity [E ] were ap p cp

the outputs, and they were predicted individually for both 
the cooling regimes. 

II.  EXPERIMENTAL AND ANALYTICAL 

PROGRAMME

A.  Experimental Programme

1) Materials
Cement used was of OPC 43 grade and it satisfied the 

requirements of IS: 8112–2013 [18] (partially satisfies 
  BS: 12–1996 [19] and ASTM C 150 / C 150M [20]). 

Laboratory test results are listed in Table II. Sand used 
 was of grading zone II which met IS: 383–1970 [21]

(partially satisfies BS: 882–1992 [22], and ASTM C 33 / 
C 33M [23]), and the properties are listed in Table III. 
Coarse aggregate (Greywacke) of 20 mm and down size 
was used and tested as per IS: 383–1970 (partially 
satisfied BS: 882–1992 and ASTM C 33 / C 33M), and 
the properties are listed in Table IV.  

Mineral admixture used in this research was fly ash, 
GGBFS, and silica fume in which fly ash was brought 
from Raichur thermal power plant, Shaktinagar, Raichur, 
Karnataka, India, and tested as per IS 3812 (Part 1):2013 
[24] (partially satisfied BS EN 450–1:2012 [25] and 

 ASTM C 618–15 [26]). Its physical and chemical 
properties were mentioned in Table V and Table VI 
respectively. Similarly, GGBFS was procured from 
Mangalore, Karnataka, India and tested as per the 
requirements of IS 12089:1987 [27] (partially satisfied 

 BS EN 15167–1:2006 [28], and ASTM C 989–04 [29]). 
Its physical and chemical properties are mentioned in 
Table VII and Table VIII respectively. Silica fume used 
was from Vadodara, Gujarat, India, which satisfied the 

 requirements of IS 15388:2003[30] (partially satisfies 
  BS EN 13263–1:2005[31], and ASTM C 1240–15[32]). 

Its physical and chemical properties are listed in Table IX 
and Table X respectively.

Two fibres were used in this research. Locally 
available galvanized iron wires were cut into straight 
fibres of length 50mm, thickness 1mm, and aspect ratio 
of 50. The properties of galvanized iron fibre are listed in 
Table XI. Polypropylene fibres were procured from 
Nagpur, India, and the properties are elaborated in Table 
XII. 

To improve the workability and to reduce the water 
content, conplast SP430 superplasticizer was used, 
which confirmed to  the requirements of IS 9103:1979 
[33] (partially satisfied BS 5075–1:1982 [34], and 

  ASTM C 494 / C 494M–16 [35]). The procured physical 
and chemical properties of superplasticizer are 
mentioned in Table XIII.

2)  Experimental Procedure

Concrete is designed for M30 grade as per IS: 

TABLE I.
CONCRETE COMBINATIONS USED IN THE EXPERIMENTS

*1 *2Concrete Combinations Blend percentage  Fibre Percentage  Remarks

C 100% Cement - Reference concrete

C + (GIF+PPF) 100% Cement 0.5% GIF +

  0.5% PPF Hybrid fibre reinforced reference concrete

(C+FA+GGBFS) + (GIF+PPF) 70% Cement + 0.5% GIF +

 15% Fly ash + 0.5% PPF Hybrid fibre reinforced ternary blended concrete 1  

 15% GGBFS 

(C+FA+SF) 70% Cement +

+ (GIF+PPF) 15% Fly ash + 0.5% GIF +

 15% Silica fume 0.5% PPF Hybrid fibre reinforced ternary blended concrete 2 
*1: Blends are calculated as percentage by weight of cementitious material. 
*2: Fibre percentage is calculated from volume fraction method.
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TABLE II.
PROPERTIES OF OPC 43 GRADE CEMENT (C)

Particulars Test Results Requirements as per

  IS: 8112-2013
2Fineness (m /Kg) by Blaine's air permeability method 270 225 (Minimum)

Fineness (%) by dry sieving 4 

Specific Gravity 3.15 

Setting Time

a. Initial (minutes) 60 30 (Minimum)

b. Final (minutes) 320 600 (Maximum)

Soundness by Le-chatelier's expansion method (mm) 2 10 (Maximum)

Soundness by Autoclave method expansion method (%) 0.2 0.8 (Maximum)

Compressive strength (MPa)

a. 3 days 27 23 (Minimum)

b. 7 days 38 33 (Minimum)

c. 28 days 44 43 (Minimum)

TABLE III.
 PROPERTIES OF FINE AGGREGATE

Particulars Test Results Requirements as per  
  IS: 2386-1963

Organic impurities Colourless Colourless/Straw colour/Dark Colour

Silt content (%) 1.8 6-10% (Maximum)

Specific gravity  2.60 

Bulking of sand (%) 8.2 40% (Maximum)

Free moisture content  0.0 

Water Absorption (%) 1.0 
3Bulk Density (Kg/m )

a. Loose condition  1752.09

b. Compacted condition 1827.12 

Fineness Modulus 2.88

TABLE IV.
PROPERTIES OF COARSE AGGREGATE

Particulars Test Results Requirements as per
  IS: 2386-1963

Specific gravity  2.65 

Free moisture content (%) 0.0 

Water Absorption (%) 0.6 
3Bulk Density (Kg/m )

a. Loose condition 1782.64

b. Compacted condition 1886.53 

Impact value (%) 15 30% (Maximum) used for concrete

Crushing value (%) 14.5 30% (Maximum) for surface course and
  45% other than wearing course

Fineness Modulus 6.54
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TABLE V.
PHYSICAL PROPERTIES OF FLY ASH (FA)

Particulars Test Results Requirements as per
   IS: 3812 (Part 1)-2013

2Fineness, specific surface area (m /kg) by Blaine's permeability method 333 320 (Minimum)

Particles retained on 45 micron IS sieve by Wet sieving (%)  4.52 34 (Maximum)

Specific Gravity 2.15 

Lime reactivity, average compressive strength (MPa)  4.68 4.5 (Minimum)

Compressive strength at 28 days (MPa)  23 Not less than 80% of the strength of
  corresponding plain cement mortar cubes

Soundness by autoclave test - Expansion of specimen (%)  0.2 0.8 (Maximum)

TABLE VI.
CHEMICAL PROPERTIES OF FLY ASH (FA)

Particulars Test Results Requirements as per 
  IS: 3812 (Part 1)-2013

Silicon Dioxide (SiO ) + Aluminium Oxide (Al O ) + Iron Oxide 92.0 70 (Minimum)2 2 3

(Fe O ) in percent by mass 2 3

Silicon dioxide (SiO ) in percent by mass 62.6 35 (Minimum)2

Reactive silica in percent by mass 38.2 20 (Minimum)

Magnesium oxide (MgO) in percent by mass 4.2 5.0 (Maximum)

Total sulphur as sulphur trioxide (SO ) in percent by mass 2.6 3.0 (Maximum)3

Available alkalis as equivalent sodium oxide (Na O) in percent by mass Nil 1.5 (Maximum)2

Total chlorides in percent by mass 0.01 0.05 (Maximum)

Loss on ignition in percent by mass 3.8 5.0 (Maximum)

TABLE VII.

PHYSICAL PROPERTIES OF GROUND GRANULATED BLAST FURNACE SLAG (GGBFS)

Particulars Test Results Requirements as per IS: 12089-1987
2Fineness as specific surface m /Kg 350 275 (Minimum)

Compressive strength (MPa) 

a. 7 days 31.66 12 (Minimum)

b. 28 days 48.33 32.5 (Minimum)

Soundness, Le-Chatelier Expansion (mm)  0.0 10 (Maximum)

Initial setting time (min)  120 30 (Minimum)

Specific Gravity 2.85



TABLE VIII.
CHEMICAL PROPERTIES OF GROUND GRANULATED BLAST FURNACE SLAG (GGBFS)

Particulars Test Results Requirements as per IS: 12089-1987

Insoluble residue (%) 0.41 1.5 (Maximum)

Magnesia Content (%) 7.55 14.0 (Maximum)

Sulphide content (%)  0.48 2.0 (Maximum)

Sulphite content (%)  0.44 2.5 (Maximum)

Loss on ignition (%)  0.33 3.0 (Maximum)

Manganese content (%)  0.12 2.0 (Maximum)

Chloride content (%)  0.011 0.10 (Maximum)

Glass content (%)  93 67 (Minimum)

Chemical Modulus

a. CaO+MgO+SiO   77.14 66.66 (Minimum)2

b. CaO+MgO+SiO   1.33 1.0 (Minimum)2

c. CaO/SiO   1.10 1.40 (Maximum)2

TABLE IX.
PHYSICAL PROPERTIES OF SILICA FUME (SF)

Particulars Test Results Requirements as IS: 15388-2003
2Specific surface m /g 20 15 (Minimum)

Oversize % retained on 45 micron IS Sieve  3.6 10 (Maximum)

Oversize  % retained on 45 micron IS Sieve variation from average % 1.8 5 (Maximum)

Compressive strength at 7 days (MPa)  26 Not less than 85 percent of the
  strength of Control Sample

Specific Gravity 2.2 
3Bulk density (kg/m )  640 500 to 700

Colour  Black
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TABLE X.
CHEMICAL PROPERTIES OF SILICA FUME (SF)

Particulars Test Results Requirements as per IS: 15388-2003

SiO  (%) 90.3 85 (Minimum)2

Moisture content (%) 0.7 3 (Maximum)
OLoss of ignition @ 975 C (%) 2.1 6 (Maximum)

Carbon (%) 0.85 2.5 (Maximum)

Alkalies as Na O (%) 0.3 1.5 (Maximum)2

TABLE XI.
PROPERTIES OF GALVANIZED IRON FIBRE (GIF)

Particulars Properties

Shape Straight

Length (mm) 50

Diameter (mm) 1

Aspect ratio  50
3Density (Kg/m ) 7850

Maximum Tensile strength (MPa) 825

Appearance Bright and clean white
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10262–2009 [36]. Based on several trials, the 
water–cement ratio arrived at was 0.45 and 100mm 
slump was maintained. The mix proportion 1: 2.02: 3.45 
was obtained. The blends are calculated as percentage by 
weight of cementitious material and fibres by volume 
fraction method [37].

For assessing compressive strength and near surface 

 characteristics (water absorption & sorptivity), 264 
standard cube specimens of 150 mm were cast. For split 
tensile strength, 264 standard cylinder specimens of 150 
mm diameter and 300 mm height were cast, and similar 
264 standard cylinders were also cast to test modulus of 

 elasticity.  Specimens were allowed to cure for 28 days. 
The fire test was conducted at Udyambag, Belagavi, 

TABLE XII.
 PROPERTIES OF POLYPROPYLENE FIBRE (PPF)

Particulars Properties

Specific Gravity  0.91

Alkali Resistance Alkali Proof

Chemical Resistance Excellent

Acid & Salt Resistance Chemical Proof

Denier 1050
2Tensile Strength (kN/mm ) 0.67

2Young's Modulus (kN/mm ) 4.00

Melt Point 165

Ignition Point 600

Absorption Nil
3Density-Bulk (Kg/m ) 910

3Density-Loose (Kg/m ) 250-430

Fibre Cut Length (mm) 20

Form Fibrillated (Mesh)

Colour Natural white

Dispersion Excellent

TABLE XIII.
PHYSICAL AND CHEMICAL PROPERTIES OF 

SUPERPLASTICIZER

Particulars Properties

Specific Gravity  1.22

Physical state Liquid

Chloride content Nil

Air entrainment 1%

Colour Brown

Odour Slight/faint

pH (Concentrate) 7-8
oBoiling point ( C) >100

oFlash point, closed ( C) None
oVapour pressure (kPa @ 20 C) 2.3

oRelative density (@ 20 C) 1.2

Water solubility Soluble

Dosage 0.5-2.0 litre/100 Kg cement
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Karnataka, India. A pit type electrical furnace buried 
inside the ground consisting of elements of Kanthal wire 
giving electrical load of 32kW was used. The maximum 

otemperature inside the furnace was 1200 C. Furnace was 
cylindrical in shape having 400 mm diameter and 1.2 m 
deep, having control panel with temperature indicator, 
temperature sensor, and ampere rating. According to ISO 
834 [38], and ASTM E119, the standard time-

temperature (t-T) curve is as shown in Fig. 1. In this 
research, the t-T curve used for the furnace is shown in 
Fig. 2. The concrete specimens were kept inside the 
furnace for a retention period of 3 hours [39].

After temperature test and cooling regimes, the 
specimens were subjected to compressive strength [f ] as ce

per IS: 516–1959 [40], (partially satisfies BS 
  1881–116:1983[41], and ASTM C 39 / C 39M[42]), split 

Fig. 1. Standard t-T Curve according to ISO 834 and ASTM E119

  Fig. 2. Time-temperature (t-T) curve used in the furnace



 tensile strength [f ] as per IS: 5816–1999 [43] (partially te
 

satisfied BS 1881 (Part 117): 1983 [44] and                                            
ASTM C 496 / C 496M – 11 [45]), for near surface 

 characteristics (water absorption [W ] & sorptivity [S ]) ae e

[46], and modulus of elasticity [E ] as per IS: 516–1959 ce
 [40], (partially satisfies ASTM C 469 / C 469M–14 [47]).

B. Analytical Programme

1) Artificial Neural Networks

ANNs are computing systems made up of a number of 
simple, highly interconnected processing elements 
which process information by their dynamic state 
response to external inputs [48]. The fundamental 
concept of neural networks is the structure of the 
information processing system [15]. Generally, an ANN 
are made of an input layer of neurons, sometimes 
referred to as nodes or processing units, one or several 
hidden layers of neurons and output layers of neurons. 
The neighbouring layers are fully interconnected by 
weight. The input layer neurons receive information 
from the outside environment and transmit them to the 
neurons of the hidden layer without performing any 
calculation [49, 50]. Layers between the input and output 

layers are called hidden layers, and may contain a large 
number of hidden processing units [17]. All problems 
that can be solved by a perceptron can be solved with 
only one hidden layer, but it is sometimes more efficient 
to use two or three hidden layers. Finally, the output layer 
neurons produce the network predictions to the outside 
world [49, 50]. Each neuron of a layer other than the 
input layer computes first a linear combination of the 
outputs of the neurons of the previous layer, plus a bias. 
The coefficients of the linear combinations plus the 
biases are called weights. 

Neurons in the hidden layer then compute a nonlinear 
function of their input. Generally, the nonlinear function 
is the sigmoid function [15]. According to the 
information mentioned here, an artificial neuron is 
composed of five main parts: inputs, weights, sum 
function, activation function and output. Fig. 3 shows a 
typical neural network with input, sum function, sigmoid 
activation function and output. 

The input to a neuron from another neuron is obtained 
by multiplying the output of the connected neuron by the 
synaptic strength of the connection between them [51]. 
The weighted sums of the input components (net)  are j

calculated in (1):
n(net)  = Σ  W O  + i                                     (1)j i=1 ij i

Fig. 3. Artificial Neuron Model
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thHere, (net)  is the weighted sum of the j  neuron for j

the input received from the preceding layer with n 
thneurons, W  is the weight between the j  neuron in the ij
th

preceding layer, O  is the output of the i  neuron in the i

preceding layer [12–14]. The quantity b is called the bias 
and is used to model the threshold. The output signal of 
the neuron, denoted by O  in Fig. 3 is related to the j

network input (net)  via a transformation function called j

the activation function [18].
The most common activation functions are ramp, 

sigmoid, and Gaussian functions. In general, for 
multilayer receptive models, the activation function           

th(f (net) ) sigmoid function is used. The output of the j  j

neuron O is calculated by (2) with a sigmoid function as j 

follows [12–14] : 
  1                                  (2)
O  = f(net)  = j j –α (net)j                                                     1+e 
Here O  is the output of neuron, α is a constant used to j

control the slope of the semi–linear region. The sigmoid 
nonlinearity activates in every layer except in the input layer 
[13, 14, 51]. The sigmoid function represented by (2) gives 
outputs in (0, 1) [12–14]. In recent years, ANNs have been 
applied to many civil engineering problems with some degree 
of success. In civil engineering, neural networks have been 
applied to the detection of structural damage, structural system 
identification, modeling of material behavior, structural 
optimization, structural control, ground water monitoring, 
prediction of experimental studies, and concrete mix 

proportions [17]. Neural network based modelling process 
determination includes: (a) data acquisition, analysis and 
problem representation; (b) architecture determination; 
(c) learning process determination; (d) training of the 
networks; and (e) testing of the trained network for 
generalization evaluation [14, 52]. After these processes 
are carried out, ANN can supply meaningful answers 
even when the data to be processed include errors or are 
incomplete and can process information extremely 

rapidly when applied to solve engineering problems [14, 
53].

2) Feed Forward Networks

In a multilayer feed forward neural network, the 
artificial neurons are arranged in layers, and all the 
neurons in each layer have connections to all the neurons 
in the next layer [15]. However, there is no connection 
between neurons of the same layer or the neurons which 
are not in successive layers. The multilayer feed forward 
network consists of one input layer, one or two hidden 
layers and one output layer of neurons [51]. Associated 
with each connection between these artificial neurons, a 
weight value is defined to represent the connection 
weight [15]. Fig. 4 shows a typical architecture of a 
multilayer feed forward neural network with an input 
layer, hidden layer, and an output layer. The input layer 
receives input information, and passes it onto the neurons 
of the hidden layer (s), which in turn pass the information 
to the output layer.

The output from the output layer is the prediction of 
the net for the corresponding input supplied at the input 
nodes. Each neuron in the network behaves in the same 
way as discussed in (1) and (2). There is no reliable 
method for deciding the number of neural units required 
for a particular problem. This is decided based on 
experience and a few trials are required to determine the 
best configuration of the network [18]. In this study, the 
multilayer feed forward type of ANN, is shown in Fig. 4 
is considered. In a multilayer feed forward network, the 
inputs and output variables are normalized within the 
range of  0–1.

3) The Back Propagation Algorithm

Back propagation algorithm, one of the most 
well–known training algorithms is a gradient descent 
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Fig. 4. Typical Architecture of a Multilayer Feed Forward Neural Network



technique to minimize the error for a particular training 
pattern in which it adjusts the weights by a small amount 
at a time [12–14]. The network error is passed backwards 
from the output layer to the input layer, and the weights 
are adjusted based on some learning strategies so as to 
reduce the network error to an acceptable level [49]. The 

therror for r  example is calculated in (3):
 1 2                                                                              E  =   (t  – O ) (3)r j j 2

Here, t  is the output desired at neuron j and O  is the j j

output predicted at neuron j. As presented in (1) and (2), 
the output O  is a function of synaptic strength and j

outputs of the previous layer [51]. The learning consists 
of changing the weights in order to minimize this error 
function in a gradient descent technique. In the back 
propagation phase, the error between the network output 
and the desired output values is calculated using the 
so–called generalized delta rule [54], and weights 
between neurons are updated from the output layer to the 
input layer by as shown in (4) [16].

W  (m+1) = W  (m) + η (δ O ) + βw  (t)      (4)ij ij j j ij

Here, the δ is the error signal at a neuron j, O  is the j j

output of neuron j, m is the number of iteration, and η, β 
are called learning rate and momentum rate, respectively. 
δ  in (4) can be calculated using the partial derivative of j

the error function E  in the output layer and other layer, r

respectively, by (5) and (6) [16, 51].

δ = O (t  - O ) (1 - O  )     (5)j j j j j

δ = O  (1 - O ) Σδ W     (6)j j j k kj

th thHere, the k  layer means the upper layer of the j  layer 
[16]. These operations are repeated for each example, 
and for all the neurons until a satisfactory convergence is 
achieved for all the examples present in the training set 
[51]. The training process is successfully completed 
when the iterative process has converged. The 
connection weights are captured from the trained 
network in order to use them in the recall phase [16]. For 
the present study, a multilayer feed forward network was 
adopted for training purpose. The error was reduced 
using a back propagation algorithm.

4) Neural Network Models

In this study, a multilayer feed forward neural 
network with a back propagation algorithm was adopted. 
The nonlinear sigmoid function was used in the hidden 
layer and the cell outputs at the output layer. Momentum 
rate was taken as 0.7, learning rate was 0.3, error after 
learning was 0.001, and learning cycles were 1000. For 
building ANN models, available 440 experimental 
results produced with 8 different mixture proportions 
were used. The neural network model architecture was 
8–15–1. As shown in Fig. 5(a) and 5(b), two artificial 
neural networks were used for prediction. 

One is for all the concrete combinations with sudden 
cooling [SCR] and other one is with gradual cooling 
[GCR]. The data used in the multilayer feed forward 
neural network models are designed with eight inputs. 
The first model includes T, C, FA, GGBFS, SF, GIF, PPF 
with SCR and the other one includes T, C, FA, GGBFS, 
SF, GIF, PPF with GCR. f  , f  , W  , S  , and E  are the cp tp ap p cp

outputs and they are predicted individually as shown in 
Table XIV for both the cooling regimes.

(a)
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One is for all the concrete combinations with sudden 
cooling [SCR] and other one is with gradual cooling 
[GCR]. The data used in the multilayer feed forward 
neural network models are designed with eight inputs. 
The first model includes T, C, FA, GGBFS, SF, GIF, PPF 
with SCR and the other one includes T, C, FA, GGBFS, 
SF, GIF, PPF with GCR. f , f , W , S , and E  are the cp tp ap p cp

outputs and they are predicted individually as shown in 
Table XIV for both the cooling regimes.

III. RESULTS AND DISCUSSION

In each ANN models, 44 data of experiment results 
were used. 70% data of experiment results were used for 

training whereas, 15% were employed for validation and 
15% for testing. In ANN models, one hidden layer was 
selected. In the hidden layer 15 neurons were determined 
due to its minimum absolute percentage error values for 
training and testing sets. The limit values of input and  
output variables used in models are listed in Table XV. In 
the ANN models, the neurons of neighbouring layers are 
fully interconnected by weights. Finally, the output layer 
neuron produces the network prediction as a result. 

Table XVI represents the data used in model 
construction for all the concrete combinations with 
sudden cooling regime (Model No. 1, 3, 5, 7, 9). Table 
XVII represents data used in model construction for all 
the concrete combinations with gradual cooling regime 

TABLE XIV.
ANN MODEL ARCHITECTURES

Model Sl. No. Input Layer Neurons (8) Hidden Layer Neurons (15) Output Layer Neurons (1)

1 T, C, FA, GGBFS, SF, GIF, PPF, SCR  HN 1 to HN 15 fcp

2 T, C, FA, GGBFS, SF, GIF, PPF, GCR HN 1 to HN 15 fcp

3 T, C, FA, GGBFS, SF, GIF, PPF, SCR  HN 1 to HN 15 ftp

4 T, C, FA, GGBFS, SF, GIF, PPF, GCR HN 1 to HN 15 ftp

5 T, C, FA, GGBFS, SF, GIF, PPF, SCR  HN 1 to HN 15 Wap

6 T, C, FA, GGBFS, SF, GIF, PPF, GCR HN 1 to HN 15 Wap

7 T, C, FA, GGBFS, SF, GIF, PPF, SCR  HN 1 to HN 15 Sp

8 T, C, FA, GGBFS, SF, GIF, PPF, GCR HN 1 to HN 15 Sp

9 T, C, FA, GGBFS, SF, GIF, PPF, SCR  HN 1 to HN 15 Ecp

10 T, C, FA, GGBFS, SF, GIF, PPF, GCR HN 1 to HN 15 Ecp
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Fig. 5. System used in ANN Model for 
(a) Sudden Cooling Regime (SCR) and (b) Gradual Cooling Regime (GCR)



(Model No. 2, 4, 6, 8, 10).
Table XVIII represents the comparison of 

experimental and ANN predicted compressive strength 
results for all the concrete combinations with sudden 
cooling regime (Model No. 1) and gradual cooling 
regime (Model No. 2). The percentage error is also 
shown. Fig. 6 shows the comparison of experimental and 
ANN predicted compressive strength results for all the 
concrete combinations with (a) sudden cooling (Model 
No. 1) and (b) gradual cooling (Model No. 2). Linear 
regression equations are also shown for each concrete 
combination.

Table XIX represents comparison of experimental 
and ANN predicted split tensile strength results for all the 
concrete combinations with sudden cooling regime 
(Model No. 3) and gradual cooling regime (Model No. 
4). The percentage error is also shown. Fig. 7 shows 
comparison of experimental and ANN predicted split 
tensile strength results for all the concrete combinations 
with (a) sudden cooling (Model No. 3) and (b) gradual
 cooling (Model No. 4). Linear regression equations are 
also shown for each concrete combination.

Table XX represents comparison of experimental and 
ANN predicted water absorption results for all the 
concrete combinations with sudden cooling regime 

(Model No. 5) and gradual cooling regime (Model No. 
6). The percentage error is also shown in Fig. 8, it shows 
comparison of experimental and ANN predicted water 
absorption results for all the concrete combinations with 
(a) sudden cooling (Model No. 5) and (b) gradual cooling 
(Model No. 6). Linear regression equations are also 
shown for each concrete combination.

Table XXI represents comparison of experimental 
and ANN predicted sorptivity results for all the concrete 
combinations with sudden cooling regime (Model No. 
7), and gradual cooling regime (Model No. 8). The 
percentage error is also shown. Fig. 9 shows comparison 
of experimental and ANN predicted sorptivity results for 
all the concrete combinations with (a) sudden cooling 
(Model No. 7) and (b) gradual cooling  (Model No. 8). 
Linear regression equations are also shown for each 
concrete combination.

Table XXII represents comparison of experimental 
and ANN predicted modulus of elasticity results for all 
the concrete combinations with sudden cooling regime 
(Model No. 9), and gradual cooling regime (Model No. 
10). The percentage error is also shown. Fig. 10 shows 
comparison of experimental and ANN predicted 
modulus of elasticity results for all the concrete 
combinations with (a) sudden cooling (Model No. 9) and 
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TABLE XV.

THE INPUT AND OUTPUT QUANTITIES USED IN ANN MODELS

Input Variables  Data used in Training and Testing the Models 

                             Sudden Cooling [SCR]                  Gradual Cooling [GCR] 

 Minimum Maximum Minimum Maximum

Sustained Elevated Temperature (°C) [T] 30 1000 30 1000
3Cement (Kg/m ) [C] 245.35 350.51 245.35 350.51

3Fly Ash (Kg/m ) [FA] 0.00 52.58 0.00 52.58
3GGBFS (Kg/m ) 0.00 52.58 0.00 52.58

3Silica Fume (Kg/m ) [SF] 0.00 52.58 0.00 52.58

GIF (%) 0 0.5 0 0.5

PPF (%) 0 0.5 0 0.5

Cooling Regime [SCR or GCR] 1 1 2 2

Output Variables  Data used in Training and Testing the Models 

                                  Sudden Cooling [SCR]              Gradual Cooling [GCR]

 Minimum Maximum Minimum Maximum

Compressive Strength (MPa) [f ] 8.30 54.92 10.12 55.18ce

Split Tensile Strength (MPa) [f ] 0.00 6.18 0.12 6.28te

Water Absorption (%) [W ] 0.93 5.60 0.92 5.45ae

0.5Sorptivity (mm/min ) [S ] 15.50 2.52 15.18 2.47e

Modulus of Elasticity x 104 (MPa) [E ] 0.60 4.78 0.72 4.81ce



(b) gradual cooling (Model No. 10). Linear regression 
equations are also shown for each concrete combination.

In this study, error arising during training and testing 
in ANN models can be expressed as a mean squared error 
(MSE) and is calculated by in (7) [13, 14].

      1 2   MSE =        Σ |t  – O | (7)i i i      n
In addition, root–mean squared error (RMSE) and the 

2absolute fraction of variance (R ) are calculated in (8) and 
(9), respectively [13, 14, 55, 56].

       1 2   RMSE =         Σ |t  – O | (8)i i i           n
2   Σ (t  – O )  i i i2  R  = 1 –     (9)

2
  Σ (O )i i

Here t is the target value, O is the output value, n is the 
pattern. The statistical values for all the stations such as 

2
MSE, RMSE and R  for training, validating and testing 
are given in Table XXIII for each output with both the  
regimes.

2It is observed that MSE, RMSE and R  values for all 

TABLE XVI.
DATA USED IN MODEL CONSTRUCTION FOR ALL THE CONCRETE COMBINATIONS WITH SUDDEN COOLING 

REGIME

    Data Used in Model Construction

Combination Sustained Cement Fly Ash   GGBFS  Silica Fume  GIF (%) PPF (%) Sudden
3 3 3 3 Elevated (Kg/m ) (Kg/m ) [FA]  (Kg/m ) (Kg/m ) [SF]    Cooling

 Temperature  (°C) [T] [C]        Regime [SCR]

C, Sudden Cooling 30 350.51 0 0 0 0 0 1

 100 350.51 0 0 0 0 0 1

 200 350.51 0 0 0 0 0 1

 300 350.51 0 0 0 0 0 1

 400 350.51 0 0 0 0 0 1

 500 350.51 0 0 0 0 0 1

 600 350.51 0 0 0 0 0 1

 700 350.51 0 0 0 0 0 1

 800 350.51 0 0 0 0 0 1

 900 350.51 0 0 0 0 0 1

 1000 350.51 0 0 0 0 0 1

C + (GIF+PPF), 30 350.51 0 0 0 0.5 0.5 1

Sudden Cooling 100 350.51 0 0 0 0.5 0.5 1

 200 350.51 0 0 0 0.5 0.5 1

 300 350.51 0 0 0 0.5 0.5 1

 400 350.51 0 0 0 0.5 0.5 1

 500 350.51 0 0 0 0.5 0.5 1
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[              ]

the 10 ANN models are within the permissible limits 
2 

(MSE, RMSE     0 and R   1). The trained models were 
only tested with the input values and the results found 
were close to experiment results. 

=~ =~



 600 350.51 0 0 0 0.5 0.5 1

 700 350.51 0 0 0 0.5 0.5 1

 800 350.51 0 0 0 0.5 0.5 1

 900 350.51 0 0 0 0.5 0.5 1

 1000 350.51 0 0 0 0.5 0.5 1

(C+FA+GGBFS) +  30 245.35 52.58 52.58 0 0.5 0.5 1

GIF+PPF), 100 245.35 52.58 52.58 0 0.5 0.5 1

Sudden Cooling 200 245.35 52.58 52.58 0 0.5 0.5 1

 300 245.35 52.58 52.58 0 0.5 0.5 1

 400 245.35 52.58 52.58 0 0.5 0.5 1

 500 245.35 52.58 52.58 0 0.5 0.5 1

 600 245.35 52.58 52.58 0 0.5 0.5 1

 700 245.35 52.58 52.58 0 0.5 0.5 1

 800 245.35 52.58 52.58 0 0.5 0.5 1

 900 245.35 52.58 52.58 0 0.5 0.5 1

 1000 245.35 52.58 52.58 0 0.5 0.5 1

(C+FA+SF) + (GIF+PPF),  30 245.35 52.58 0 52.58 0.5 0.5 1

Sudden Cooling 100 245.35 52.58 0 52.58 0.5 0.5 1

 200 245.35 52.58 0 52.58 0.5 0.5 1

 300 245.35 52.58 0 52.58 0.5 0.5 1

 400 245.35 52.58 0 52.58 0.5 0.5 1

 500 245.35 52.58 0 52.58 0.5 0.5 1

 600 245.35 52.58 0 52.58 0.5 0.5 1

 700 245.35 52.58 0 52.58 0.5 0.5 1

 800 245.35 52.58 0 52.58 0.5 0.5 1

 900 245.35 52.58 0 52.58 0.5 0.5 1

 1000 245.35 52.58 0 52.58 0.5 0.5 1

TABLE XVII.
DATA USED IN MODEL CONSTRUCTION FOR ALL THE CONCRETE COMBINATIONS WITH GRADUAL COOLING 

REGIME

Combination    Data used in Model Construction

 Sustained Cement Fly Ash   GGBFS  Silica Fume  GIF (%) PPF (%) Gradual 
3 3 3 3 Elevated (Kg/m ) (Kg/m ) [FA]  (Kg/m ) (Kg/m ) [SF]    Cooling 

 Temperature  (°C) [T] [C]       Regime [GCR]

C, Gradual Cooling 30 350.51 0 0 0 0 0 2

 100 350.51 0 0 0 0 0 2

 200 350.51 0 0 0 0 0 2

 300 350.51 0 0 0 0 0 2

 400 350.51 0 0 0 0 0 2

 500 350.51 0 0 0 0 0 2

 600 350.51 0 0 0 0 0 2

 700 350.51 0 0 0 0 0 2

 800 350.51 0 0 0 0 0 2

 900 350.51 0 0 0 0 0 2

 1000 350.51 0 0 0 0 0 2
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C + (GIF+PPF), 30 350.51 0 0 0 0.5 0.5 2

Gradual Cooling 100 350.51 0 0 0 0.5 0.5 2

 200 350.51 0 0 0 0.5 0.5 2

 300 350.51 0 0 0 0.5 0.5 2

 400 350.51 0 0 0 0.5 0.5 2

 500 350.51 0 0 0 0.5 0.5 2

 600 350.51 0 0 0 0.5 0.5 2

 700 350.51 0 0 0 0.5 0.5 2

 800 350.51 0 0 0 0.5 0.5 2

 900 350.51 0 0 0 0.5 0.5 2

 1000 350.51 0 0 0 0.5 0.5 2

(C+FA+GGBFS) +  30 245.35 52.58 52.58 0 0.5 0.5 2

GIF+PPF), 100 245.35 52.58 52.58 0 0.5 0.5 2

Gradual Cooling 200 245.35 52.58 52.58 0 0.5 0.5 2

 300 245.35 52.58 52.58 0 0.5 0.5 2

 400 245.35 52.58 52.58 0 0.5 0.5 2

 500 245.35 52.58 52.58 0 0.5 0.5 2

 600 245.35 52.58 52.58 0 0.5 0.5 2

 700 245.35 52.58 52.58 0 0.5 0.5 2

 800 245.35 52.58 52.58 0 0.5 0.5 2

 900 245.35 52.58 52.58 0 0.5 0.5 2

 1000 245.35 52.58 52.58 0 0.5 0.5 2

(C+FA+SF) + (GIF+PPF),  30 245.35 52.58 0 52.58 0.5 0.5 2

Gradual Cooling 100 245.35 52.58 0 52.58 0.5 0.5 2

 200 245.35 52.58 0 52.58 0.5 0.5 2

 300 245.35 52.58 0 52.58 0.5 0.5 2

 400 245.35 52.58 0 52.58 0.5 0.5 2

 500 245.35 52.58 0 52.58 0.5 0.5 2

 600 245.35 52.58 0 52.58 0.5 0.5 2

 700 245.35 52.58 0 52.58 0.5 0.5 2

 800 245.35 52.58 0 52.58 0.5 0.5 2

 900 245.35 52.58 0 52.58 0.5 0.5 2

 1000 245.35 52.58 0 52.58 0.5 0.5 2

TABLE XVIII.
COMPARISON OF EXPERIMENTAL AND ANN PREDICTED COMPRESSIVE STRENGTH RESULTS FOR ALL THE 

CONCRETE  COMBINATIONS WITH BOTH COOLING REGIMES

   Compressive Strength    Compressive Strength

Sustained Combination Experimental  Predicted % Error  Combination Experimental  Predicted  % Error
Elevated  Result Result    Result  Result 
Temperature  (MPa) [f ] (MPa) [f ]   (MPa) [f ] (MPa) [f ]ce cp ce cp

(°C) [T]       

30 C, Sudden Cooling 39.53 37.797 1.733 C, Gradual Cooling 39.97 37.872 2.098

100  38.64 38.323 0.317  39.08 39.075 0.005

200  37.68 38.588 -0.908  38.18 39.175 -0.995
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300  36.86 37.020 -0.160  37.30 37.291 0.009

400  33.82 33.730 0.090  34.25 34.061 0.189

500  29.86 29.576 0.284  30.30 30.239 0.061

600  25.33 25.223 0.107  26.20 26.341 -0.141

700  21.19 20.904 0.286  22.64 22.532 0.108

800  16.85 16.554 0.296  17.80 18.727 -0.927

900  12.30 11.980 0.320  14.75 14.766 -0.016

1000  8.30 6.984 1.316  10.12 10.514 -0.394

30 C + (GIF+PPF), 46.81 46.767 0.043 C + (GIF+PPF),  47.32 47.390 -0.070

100 Sudden Cooling 46.25 46.017 0.233 Gradual Cooling 46.78 46.579 0.201

200  45.15 45.241 -0.091  45.68 45.881 -0.201

300  44.10 43.934 0.166  44.60 44.462 0.138

400  40.36 40.942 -0.582  40.82 41.288 -0.468

500  36.00 36.333 -0.333  36.45 36.721 -0.271

600  31.30 31.191 0.109  31.67 31.704 -0.034

700  26.60 26.312 0.288  26.92 26.808 0.112

800  21.80 21.799 0.001  22.06 22.102 -0.042

900  17.20 17.357 -0.157  17.40 17.414 -0.014

1000  12.50 12.656 -0.156  12.63 12.589 0.041

30 (C+FA+GGBFS) + (GIF+PPF), 54.14 54.641 -0.501 (C+FA+GGBFS) +   54.72 54.604 0.116

100 Sudden Cooling 53.60 54.203 -0.603 (GIF+PPF), 54.20 54.346 -0.146

200  52.95 53.477 -0.527 Gradual Cooling 53.60 53.766 -0.166

300  52.35 52.253 0.097  52.98 52.564 0.416

400  49.72 50.297 -0.577  50.32 50.478 -0.158

500  46.88 47.641 -0.761  47.45 47.633 -0.183

600  44.12 44.279 -0.159  44.65 44.459 0.191

700  40.35 40.137 0.213  40.84 40.942 -0.102

800  36.15 35.486 0.664  36.55 36.516 0.034

900  31.50 30.603 0.897  31.84 30.977 0.863

1000  27.32 25.375 1.945  27.61 24.527 3.083

30 (C+FA+SF) + (GIF+PPF),  54.92 54.865 0.055 (C+FA+SF) + (GIF+PPF),  55.18 55.173 0.007

100 Sudden Cooling 54.45 54.587 -0.137 Gradual Cooling 54.74 54.871 -0.131

200  53.99 53.916 0.074  54.28 54.165 0.115

300  53.00 52.715 0.285  53.30 52.954 0.346

400  50.80 50.743 0.057  51.10 51.007 0.093

500  47.80 47.917 -0.117  48.08 48.197 -0.117

600  44.55 44.510 0.040  44.80 44.712 0.088

700  40.78 40.857 -0.077  41.00 40.968 0.032

800  36.80 36.920 -0.120  36.99 37.021 -0.031

900  32.50 32.676 -0.176  32.66 32.674 -0.014

1000  28.11 28.307 -0.197  28.24 28.241 -0.001
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TABLE XIX.
COMPARISON OF EXPERIMENTAL AND ANN PREDICTED SPLIT TENSILE STRENGTH RESULTS FOR ALL THE 

CONCRETE COMBINATIONS WITH BOTH COOLING REGIMES

   Split Tensile Strength    Split Tensile Strength

Sustained Combination Experimental  Predicted  % Error Combination Experimental  Predicted % Error 
Elevated  Result  Result    Result Result 
Temperature  (MPa) [f ] (MPa) [f ]   (MPa) [f ] (MPa) [f ]te tp te tp

(°C) [T]        

30 C, Sudden Cooling 3.86 4.031 -0.171 C, Gradual Cooling 3.98 3.404 0.576

100  3.76 3.759 0.001  3.88 3.646 0.234

200  3.62 3.446 0.174  3.74 3.754 -0.014

300  3.40 3.133 0.267  3.51 3.465 0.045

400  2.96 2.728 0.232  3.06 2.845 0.215

500  2.18 2.178 0.002  2.32 2.188 0.132

600  1.52 1.523 -0.003  1.58 1.722 -0.142

700  0.90 0.901 -0.001  1.12 1.442 -0.322

800  0.43 0.453 -0.023  0.78 1.241 -0.461

900  0.23 0.231 -0.001  0.45 1.039 -0.589

1000  0.00 0.195 -0.195  0.12 0.812 -0.692

30 C + (GIF+PPF), 5.07 5.058 0.012 C + (GIF+PPF),  5.21 5.121 0.089

100 Sudden Cooling 5.00 5.014 -0.014 Gradual Cooling 5.14 5.053 0.087

200  4.92 4.911 0.009  5.06 4.991 0.069

300  4.70 4.683 0.017  4.84 4.850 -0.010

400  4.30 4.300 0.000  4.43 4.551 -0.121

500  3.83 3.775 0.055  3.96 4.077 -0.117

600  3.14 3.157 -0.017  3.24 3.462 -0.222

700  2.52 2.506 0.014  2.62 2.772 -0.152

800  1.88 1.868 0.012  1.94 2.068 -0.128

900  1.32 1.276 0.044  1.40 1.391 0.009

1000  0.74 0.745 -0.005  0.80 0.757 0.043

30 (C+FA+GGBFS) + (GIF+PPF), 6.08 6.075 0.005 (C+FA+GGBFS) +  6.22 6.189 0.031

100 Sudden Cooling 6.01 6.011 -0.001 (GIF+PPF), 6.15 6.082 0.068

200  5.90 5.877 0.023 Gradual Cooling 6.04 5.908 0.132

300  5.60 5.632 -0.032  5.74 5.648 0.092

400  5.26 5.218 0.042  5.40 5.249 0.151

500  4.65 4.658 -0.008  4.78 4.717 0.063

600  4.05 4.067 -0.017  4.15 4.136 0.014

700  3.57 3.536 0.034  3.66 3.604 0.056

800  3.05 3.061 -0.011  3.15 3.159 -0.009

900  2.40 2.607 -0.207  2.50 2.787 -0.287

1000  1.95 2.154 -0.204  2.05 2.454 -0.404

30 (C+FA+SF) + (GIF+PPF),  6.18 6.169 0.011 (C+FA+SF) + (GIF+PPF),  6.28 6.272 0.008

100 Sudden Cooling 6.12 6.134 -0.014 Gradual Cooling 6.23 6.084 0.146

200  6.02 6.019 0.001  6.13 5.897 0.233

300  5.75 5.765 -0.015  5.85 5.648 0.202

400  5.36 5.332 0.028  5.45 5.268 0.182

500  4.75 4.781 -0.031  4.84 4.800 0.040

600  4.18 4.224 -0.044  4.26 4.310 -0.050

700  3.72 3.708 0.012  3.81 3.821 -0.011

800  3.22 3.211 0.009  3.30 3.330 -0.030

900  2.70 2.717 -0.017  2.76 2.846 -0.086

1000  2.26 2.252 0.008  2.31 2.398 -0.088
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TABLE XX.
COMPARISON OF EXPERIMENTAL AND ANN PREDICTED WATER ABSORPTION RESULTS FOR ALL THE CONCRETE 

COMBINATIONS WITH BOTH COOLING REGIMES

   Water Absorption    Water Absorption

Sustained Combination Experimental  Predicted  % Error Combination Experimental  Predicted % Error 
Elevated  Result Result (%)    Result  Result (%)
Temperature  (%) [W ] [W ]   (%) [W ] [W ] ae ap ae ap

(°C) [T]        

30 C,  Sudden Cooling 1.30 1.297 0.003 C,  Gradual Cooling 1.27 1.303 -0.033

100  1.36 1.360 0.000  1.33 1.330 0.000

200  1.45 1.461 -0.011  1.41 1.392 0.018

300  1.58 1.585 -0.005  1.53 1.490 0.040

400  1.75 1.745 0.005  1.65 1.638 0.012

500  1.96 1.961 -0.001  1.85 1.851 -0.001

600  2.26 2.259 0.001  2.15 2.149 0.001

700  2.68 2.681 -0.001  2.57 2.571 -0.001

800  3.25 3.292 -0.042  3.13 3.182 -0.052

900  4.20 4.200 0.000  4.08 4.080 0.000

1000  5.60 5.531 0.069  5.45 5.343 0.107

30 C + (GIF+PPF), 1.08 1.081 -0.001 C + (GIF+PPF), 1.07 1.072 -0.002

100 Sudden Cooling 1.10 1.097 0.003 Gradual Cooling 1.09 1.085 0.005

200  1.13 1.135 -0.005  1.11 1.118 -0.008

300  1.21 1.207 0.003  1.19 1.185 0.005

400  1.34 1.319 0.021  1.32 1.298 0.022

500  1.48 1.478 0.002  1.46 1.458 0.002

600  1.69 1.692 -0.002  1.67 1.672 -0.002

700  1.98 1.979 0.001  1.96 1.959 0.001

800  2.35 2.385 -0.035  2.32 2.363 -0.043

900  2.95 2.990 -0.040  2.92 2.965 -0.045

1000  3.90 3.900 0.000  3.86 3.860 0.000

30 (C+FA+GGBFS) + (GIF+PPF), 0.99 0.991 -0.001 (C+FA+GGBFS) +  0.98 0.980 0.000

100 Sudden Cooling 1.00 1.001 -0.001 (GIF+PPF), 0.99 0.991 -0.001

200  1.03 1.024 0.006 Gradual Cooling 1.01 1.004 0.006

300  1.06 1.071 -0.011  1.03 1.040 -0.010

400  1.15 1.147 0.003  1.11 1.108 0.002

500  1.25 1.246 0.004  1.21 1.205 0.005

600  1.37 1.369 0.001  1.33 1.329 0.001

700  1.51 1.516 -0.006  1.47 1.476 -0.006

800  1.70 1.698 0.002  1.65 1.648 0.002

900  1.95 1.934 0.016  1.88 1.845 0.035

1000  2.29 2.253 0.037  2.17 2.075 0.095

30 (C+FA+SF) + (GIF+PPF),  0.93 0.930 0.000 (C+FA+SF) + (GIF+PPF),  0.92 0.920 0.000

100 Sudden Cooling 0.94 0.941 -0.001 Gradual Cooling 0.92 0.920 0.000

200  0.96 0.958 0.002  0.94 0.938 0.002

300  0.99 0.997 -0.007  0.96 0.980 -0.020

400  1.06 1.063 -0.003  1.04 1.044 -0.004

500  1.16 1.157 0.003  1.13 1.128 0.002

600  1.26 1.271 -0.011  1.23 1.231 -0.001

700  1.40 1.402 -0.002  1.36 1.357 0.003

800  1.56 1.557 0.003  1.51 1.514 -0.004

900  1.76 1.762 -0.002  1.72 1.719 0.001

1000  2.06 2.059 0.001  1.99 1.990 0.000
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TABLE XXI.
COMPARISON OF EXPERIMENTAL AND ANN PREDICTED SORPTIVITY RESULTS FOR ALL THE CONCRETE 

COMBINATIONS WITH BOTH COOLING REGIMES

  Sorptivity     Sorptivity

Sustained Combination Experimental  Predicted % Error Combination Experimental  Predicted % Error 
Elevated  Result  Result    Result Result  

0.5 0.5 0.5 0.5Temperature  (mm/min ) (mm/min )   (mm/min ) (mm/min )
(°C) [T]  [S ] [S ]   [S ] [S ] e p e p

30 C, Sudden Cooling 5.49 5.621 -0.131 C,  Gradual Cooling 5.40 5.371 0.029

100  5.75 5.807 -0.057  5.65 5.649 0.001

200  6.07 6.139 -0.069  5.96 6.059 -0.099

300  6.50 6.569 -0.069  6.39 6.506 -0.116

400  7.05 7.121 -0.071  6.93 7.022 -0.092

500  7.80 7.824 -0.024  7.66 7.654 0.006

600  8.60 8.709 -0.109  8.44 8.457 -0.017

700  9.68 9.806 -0.126  9.50 9.497 0.003

800  11.08 11.134 -0.054  10.87 10.840 0.030

900  12.80 12.685 0.115  12.55 12.557 -0.007

1000  15.50 14.412 1.088  15.18 14.706 0.474

30 C + (GIF+PPF),  4.30 4.299 0.001 C + (GIF+PPF), 4.25 4.261 -0.011

100 Sudden Cooling 4.47 4.462 0.008 Gradual Cooling 4.41 4.388 0.022

200  4.67 4.676 -0.006  4.61 4.598 0.012

300  4.93 4.917 0.013  4.86 4.883 -0.023

400  5.34 5.240 0.100  5.27 5.272 -0.002

500  5.86 5.697 0.163  5.78 5.773 0.007

600  6.50 6.327 0.173  6.41 6.383 0.027

700  7.20 7.156 0.044  7.10 7.118 -0.018

800  8.16 8.185 -0.025  8.04 8.039 0.001

900  9.35 9.390 -0.040  9.21 9.250 -0.040

1000  11.08 10.714 0.366  10.88 10.877 0.003

30 (C+FA+GGBFS) + (GIF+PPF),  2.88 2.732 0.148 (C+FA+GGBFS) +   2.83 2.826 0.004

100 Sudden Cooling 2.95 2.857 0.093 (GIF+PPF), 2.89 2.897 -0.007

200  3.05 3.005 0.045 Gradual Cooling 2.99 2.990 0.000

300  3.18 3.163 0.017  3.12 3.115 0.005

400  3.36 3.362 -0.002  3.29 3.292 -0.002

500  3.60 3.615 -0.015  3.53 3.528 0.002

600  3.90 3.920 -0.020  3.82 3.822 -0.002

700  4.25 4.271 -0.021  4.17 4.172 -0.002

800  4.67 4.659 0.011  4.58 4.579 0.001

900  5.20 5.079 0.121  5.10 5.044 0.056

1000  5.90 5.530 0.370  5.79 5.572 0.218

30 (C+FA+SF) + (GIF+PPF),  2.52 2.549 -0.029 (C+FA+SF) + (GIF+PPF),  2.47 2.473 -0.003

100 Sudden Cooling 2.57 2.553 0.017 Gradual Cooling 2.51 2.502 0.008

200  2.62 2.604 0.016  2.56 2.567 -0.007

300  2.73 2.702 0.028  2.67 2.661 0.009

400  2.87 2.844 0.026  2.80 2.791 0.009

500  3.02 3.029 -0.009  2.95 2.962 -0.012

600  3.27 3.258 0.012  3.19 3.178 0.012

700  3.54 3.533 0.007  3.46 3.447 0.013

800  3.84 3.860 -0.020  3.76 3.771 -0.011

900  4.25 4.249 0.001  4.16 4.154 0.006

1000  4.70 4.707 -0.007  4.60 4.601 -0.001
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TABLE XXII.
COMPARISON OF EXPERIMENTAL AND ANN PREDICTED MODULUS OF ELASTICITY RESULTS FOR ALL THE 

CONCRETE COMBINATIONS WITH BOTH COOLING REGIMES

   Modulus of Elasticity

Sustained Combination Experimental  Predicted  % Error Combination Experimental  Predicted % Error 
4 4 4 4Elevated  Result x 10  Result x 10     Result x 10   Result x 10  

Temperature  (MP ) [E ] (MP ) [E ]   (MP ) [E ] (MP ) [E ]a ce a cp a ce a cp

(°C) [T]     

30 C, Sudden Cooling 3.15 3.036 0.114 C, Gradual Cooling 3.25 3.172 0.078

100  3.06 3.055 0.005  3.16 3.160 0.000

200  2.95 2.983 -0.033  3.05 3.070 -0.020

300  2.83 2.808 0.022  2.93 2.899 0.031

400  2.60 2.570 0.030  2.70 2.670 0.030

500  2.30 2.299 0.001  2.40 2.399 0.001

600  2.00 1.995 0.005  2.09 2.091 -0.001

700  1.65 1.652 -0.002  1.75 1.749 0.001

800  1.30 1.292 0.008  1.40 1.392 0.008

900  0.95 0.950 0.000  1.05 1.050 0.000

1000  0.60 0.648 -0.048  0.72 0.757 -0.037

30 C + (GIF+PPF),  4.25 4.245 0.005 C + (GIF+PPF),  4.30 4.298 0.002

100 Sudden Cooling 4.18 4.186 -0.006 Gradual Cooling 4.23 4.236 -0.006

200  4.09 4.079 0.011  4.14 4.129 0.011

300  3.92 3.922 -0.002  3.97 3.978 -0.008

400  3.68 3.697 -0.017  3.73 3.763 -0.033

500  3.42 3.402 0.018  3.47 3.475 -0.005

600  3.06 3.059 0.001  3.13 3.124 0.006

700  2.70 2.702 -0.002  2.74 2.744 -0.004

800  2.35 2.352 -0.002  2.39 2.373 0.017

900  2.01 2.010 0.000  2.05 2.027 0.023

1000  1.65 1.653 -0.003  1.69 1.689 0.001

30 (C+FA+GGBFS) + (GIF+PPF),  4.69 4.696 -0.006 (C+FA+GGBFS) +  4.73 4.728 0.002

100 Sudden Cooling 4.63 4.634 -0.004 (GIF+PPF), 4.67 4.671 -0.001

200  4.56 4.572 -0.012 Gradual Cooling 4.60 4.610 -0.010

300  4.46 4.445 0.015  4.50 4.484 0.016

400  4.20 4.200 0.000  4.24 4.241 -0.001

500  3.86 3.871 -0.011  3.90 3.917 -0.017

600  3.54 3.518 0.022  3.58 3.564 0.016

700  3.16 3.157 0.003  3.19 3.195 -0.005

800  2.78 2.770 0.010  2.81 2.810 0.000

900  2.40 2.347 0.053  2.43 2.423 0.007

1000  2.00 1.897 0.103  2.02 2.063 -0.043

30 (C+FA+SF) + (GIF+PPF),  4.78 4.779 0.001 (C+FA+SF) + (GIF+PPF),  4.81 4.807 0.003

100 Sudden Cooling 4.73 4.730 0.000 Gradual Cooling 4.76 4.768 -0.008

200  4.68 4.675 0.005  4.71 4.705 0.005

300  4.56 4.548 0.012  4.59 4.571 0.019

400  4.32 4.312 0.008  4.35 4.343 0.007

500  4.00 4.003 -0.003  4.03 4.042 -0.012

600  3.66 3.664 -0.004  3.69 3.701 -0.011

700  3.32 3.310 0.010  3.35 3.343 0.007

800  2.94 2.940 0.000  2.97 2.973 -0.003

900  2.56 2.557 0.003  2.59 2.592 -0.002

1000  2.18 2.176 0.004  2.20 2.199 0.001
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Fig. 6. Comparison of Experimental and ANN Predicted Compressive Strength Results for all the Concrete 
Combinations with (a) Sudden Cooling and (b) Gradual Cooling

(b)

(a)
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(b)

(a)

Fig. 7. Comparison of Experimental and ANN Predicted Split Tensile Strength Results for all the Concrete 
Combinations with (a) Sudden Cooling and (b) Gradual Cooling
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(b)

(a)

Fig. 8. Comparison of Experimental and ANN Predicted Water Absorption Results for all the Concrete 
Combinations with (a) Sudden Cooling and (b) Gradual Cooling
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Fig. 9. Comparison of Experimental and ANN Predicted Sorptivity Results for all the Concrete 
Combinations with (a) Sudden Cooling and (b) Gradual Cooling

(b)

(a)
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(b)

(a)

Fig. 10. Comparison of Experimental and ANN Predicted Modulus of Elasticity Results for all the 
Concrete Combinations with (a) Sudden Cooling and (b) Gradual Cooling
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TABLE XXIII. 
STATISTICAL PARAMETERS OF PROPOSED ANN MODELS FOR ALL THE OUTPUTS WITH BOTH COOLING REGIMES

Output Variable   Compressive Strength [f ]cp

  Sudden Cooling [SCR] (Model No. 1)   Gradual Cooling [GCR] (Model No. 2)

Statistical Parameters Training Set Validation Set Testing Set Training Set Validation Set Testing Set

MSE 0.1015 0.1536 1.3929 0.0184 0.2760 2.1694

RMSE 0.3186 0.3919 1.1802 0.1357 0.5254 1.4729
2R  0.9997 0.9996 0.9983 0.9999 0.9992 0.9951

Output Variable   Split Tensile Strength [f ]tp

  Sudden Cooling [SCR] (Model No. 3)   Gradual Cooling [GCR] (Model No. 4)

Statistical Parameters Training Set Validation Set Testing Set Training Set Validation Set Testing Set

MSE 0.0003 0.0155 0.0294 0.0275 0.0353 0.1655

RMSE 0.0171 0.1247 0.1715 0.1659 0.1879 0.4068
2R  1.0000 0.9972 0.9965 0.9972 0.9944 0.9826

Output Variable   Water Absorption [W ]ap

  Sudden Cooling [SCR] (Model No. 5)   Gradual Cooling [GCR] (Model No. 6)

Statistical Parameters Training Set Validation Set Testing Set Training Set Validation Set Testing Set

MSE 1.14e-05 0.0007 0.000976 1.28e-05 0.0012 0.0034

RMSE 0.0034 0.0263 0.0312 0.0036 0.0350 0.0582
2R  1.0000 1.0000 1.0000 1.0000 0.9998 0.9998

Output Variable   Sorptivity [S ]p

  Sudden Cooling [SCR] (Model No. 7)   Gradual Cooling [GCR] (Model No. 8)

Statistical Parameters Training Set Validation Set Testing Set Training Set Validation Set Testing Set

MSE 0.0082 0.0059 0.1955 0.0001 0.0037 0.0407

RMSE 0.0908 0.0768 0.4422 0.0108 0.0610 0.2016
2R  0.9995 0.9996 0.9985 1.0000 0.9997 0.9996

Output Variable   Modulus of Elasticity [E ]cp

  Sudden Cooling [SCR] (Model No. 9)   Gradual Cooling [GCR] (Model No. 10)

Statistical Parameters Training Set Validation Set Testing Set Training Set Validation Set Testing Set

MSE 5.43e-05 0.0003 0.0043 5.17e-05 0.0003 0.0017

RMSE 0.0074 0.0168 0.0656 0.0072 0.0185 0.0407
2

R  1.0000 0.9998 0.9989 1.0000 0.9998 0.9995

artificial neural networks for predicting the compressive  
strength [f ], split tensile strength [f ], water absorption cp tp

[W ], sorptivity [S ], and modulus of elasticity [E ] ap p cp

without attempting any experiments were developed 
with 10 different multilayer artificial neural network 
architectures (Model No. 1 to Model No. 10). 

For building ANN models, 440 available 
experimental results produced with 8 different mixture 
proportions were used. Two major artificial neural 
networks were used for prediction. One was for all the 
concrete combinations with sudden cooling [SCR], and 
other one is with gradual cooling [GCR]. The data used in 
the multilayer feed forward neural network models 
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the 10 ANN models are within the permissible limits 
2(MSE, RMSE @ 0 and R  = 1). The trained models were only 

tested with the input values and the results found were close to 

  IV. CONCLUSION

Artificial neural networks are capable of learning and 
generalizing from examples and experiences. This 
makes artificial neural networks a powerful tool for 
solving some of the complicated civil engineering 
problems. 

In this study, using these beneficial properties of 
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no. 1, pp. 117-25, 2007. 
doi: https://doi.org/10.1016/j.commatsci.2007.03.010
[13] I. B. Topçu, and M. Sarıdemir, "Prediction of 
compressive strength of concrete containing fly ash 
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Mater Sci., vol. 41, no. 3,  pp. 305-311, 2008.
[14] M. Pala, E. Özbay, A. Öztas and M. I. Yüce, 
"Appraisal of long-term effects of fly ash and silica fume 
on compressive strength of concrete by neural 
networks," Construction and Building Materials, vol. 21, 
no. 2,  pp. 384-394, 2007.
doi: https://doi.org/10.1016/j.conbuildmat.2005.08.009
[15] B. B. Adhikary and H. Mutsuyoshi, "Prediction of 
shear strength of steel fiber RC beams using neural 
networks," Construction and Building Materials, vol. 
20, no. 9, pp. 801-811, 2006. 
doi: https://doi.org/10.1016/j.conbuildmat.2005.01.047
[16] R. Ince, "Prediction of fracture parameters of 
concrete by artificial neural networks," Eng. Fracture 
Mech, vol. 71, no. 15, pp. 2143-59, 2004. 
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(architecture, 8–15–1) were designed with eight input 
parameters covering temperature [T], cement [C], fly ash 
[FA], GGBFS [GGBFS], Silica Fume [SF], galvanized 
iron fibre [GIF] polypropylene fibre [PPF], and cooling 
regime [SCR or GCR]. These five tests were the outputs 
and they were predicted individually for both the cooling 
regimes. It shows that neural networks have high 
potential for predicting results.

2It is observed that MSE, RMSE, and R  values for all 
the 10 ANN models are within the permissible limits 

2(MSE, RMSE    0 and R     1). The trained models were 
only tested with the input values, and the results found 
were close to experiment results.

As a result, successful predictions can be made for 
strength, near surface characteristics, modulus of 
elasticity of hybrid fibre reinforced blended concretes 
subject to sustained elevated temperatures for 3 hours 
retention period using multilayer feed forward artificial 
neural networks models without attempting any 
experiments in a quite short period of time with tiny error 
rates. 
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